Control of a Mobile Service Robot Using Human Evaluations of Task-related Movement Patterns

2000 ◽  
Vol 12 (6) ◽  
pp. 689-701
Author(s):  
John Travis Butler ◽  
◽  
Arvin Agah ◽  

An important future application of robotics will be the utilization of mobile service robots in homes and offices, assisting people with their daily chores. Above all, these robots must be safe to use. In addition, service robots must be designed to be effective, productive, and user-friendly. In order for people to accept and use these robots, the robots must behave in a manner acceptable to humans. The intelligent control of service robots must take into. account the effects of robot behaviors on people. This paper focuses on the interactions between humans and mobile service robots, studying how people respond to a variety of robot behaviors as the robot performs certain tasks. Since different people could react differently to service robots, this paper reports on the effects of users' gender, age, technical background, and robot body preference on the responses to robot behaviors. The robot behaviors include the robot approaching a human, the robot avoiding a human while passing, and the robot performing non-interactive behaviors. The level of comfort the robot caused human subjects was analyzed according to the effects of robot speed, robot distance, and robot body design. It is hoped that information gained from human factor studies can be used to obtain a better understanding of acceptability of service robots by different people, resulting in the design and development of more effective intelligent controllers for service robots in the coming new generation.

2013 ◽  
Vol 394 ◽  
pp. 448-455 ◽  
Author(s):  
A.A. Nippun Kumaar ◽  
T.S.B. Sudarshan

Learning from Demonstration (LfD) is a technique for teaching a system through demonstration. In areas like service robotics the robot should be user friendly in terms of coding, so LfD techniques will be of greater advantage in this domain. In this paper two novel approaches, counter based technique and encoder based technique is proposed for teaching a mobile service robot to navigate from one point to another with a novel state based obstacle avoidance technique. The main aim of the work is to develop an LfD Algorithm which is less complex in terms of hardware and software. Both the proposed methods along with obstacle avoidance have been implemented and tested using Player/Stage robotics simulator.


Author(s):  
Ali Gürcan Özkil ◽  
Thomas Howard

This paper presents a new and practical method for mapping and annotating indoor environments for mobile robot use. The method makes use of 2D occupancy grid maps for metric representation, and topology maps to indicate the connectivity of the ‘places-of-interests’ in the environment. Novel use of 2D visual tags allows encoding information physically at places-of-interest. Moreover, using physical characteristics of the visual tags (i.e. paper size) is exploited to recover relative poses of the tags in the environment using a simple camera. This method extends tag encoding to simultaneous localization and mapping in topology space, and fuses camera and robot pose estimations to build an automatically annotated global topo-metric map. It is developed as a framework for a hospital service robot and tested in a real hospital. Experiments show that the method is capable of producing globally consistent, automatically annotated hybrid metric-topological maps that is needed by mobile service robots.


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142096852
Author(s):  
Wang Yugang ◽  
Zhou Fengyu ◽  
Zhao Yang ◽  
Li Ming ◽  
Yin Lei

A novel iterative learning control (ILC) for perspective dynamic system (PDS) is designed and illustrated in detail in this article to overcome the uncertainties in path tracking of mobile service robots. PDS, which transmits the motion information of mobile service robots to image planes (such as a camera), provides a good control theoretical framework to estimate the robot motion problem. The proposed ILC algorithm is applied in accordance with the observed motion information to increase the robustness of the system in path tracking. The convergence of the presented learning algorithm is derived as the number of iterations tends to infinity under a specified condition. Simulation results show that the designed framework performs efficiently and satisfies the requirements of trajectory precision for path tracking of mobile service robots.


2021 ◽  
Author(s):  
Yiran Tian ◽  
Xingrun An ◽  
Xiaoqing Qiu ◽  
Xichen Xu ◽  
Sen Zhang

Author(s):  
Wojciech Dudek ◽  
Wojciech Szynkiewicz

A review of the known and an indication of the new threats for cyber-physical robotic systems, caused by cybernetic attacks, serves, in this paper, as a basis for the analysis of the known methods relied upon to detect and mitigate consequences of such attacks. A particular emphasis is placed on threats specific for cyber-physical systems, as they are a feature distinguishing these systems from their traditional Information and Communication Technologies (ICT) counterparts. Based on the review of literature and own analyses, unresolved issues regarding the cyber-security of robot systems are presented and discussed.


2012 ◽  
pp. 229-246
Author(s):  
Jwu-Sheng Hu ◽  
Yung-Jung Chang

The geometrical relationships among robot arm, camera, and workspace are important to carry out visual servo tasks. For industrial robots, the relationships are usually fixed and well calibrated by experienced operators. However, for service robots, particularly in mobile applications, the relationships might be changed. For example, when a mobile robot attempts to use the visual information from environmental cameras to perform grasping, it is necessary to know the relationships before taking actions. Moreover, the calibration should be done automatically. This chapter proposes a self-calibration method using a laser distance sensor mounted on the robot arm. The advantage of the method, as compared with pattern-based one, is that the workspace coordinate is also obtained at the same time using the projected laser spot. Further, it is not necessary for the robot arm to enter the view scope of the camera for calibration. This increases the safety when the workspace is unknown initially.


Sign in / Sign up

Export Citation Format

Share Document