A New Close-Loop Control Method for an Inspection Robot Equipped with Electropermanent-Magnets

2016 ◽  
Vol 28 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Pakpoom Kriengkomol ◽  
◽  
Kazuto Kamiyama ◽  
Masaru Kojima ◽  
Mitsuhiro Horade ◽  
...  

[abstFig src='/00280002/09.jpg' width=""300"" text='ASTERISK use our proposed method to walk' ]Since the industrial age began, increasing numbers of manufacturing plants have been set up to serve economic growth demand. More bridges were built simultaneously to connect cities and to make transportation more convenient. As these facilities have aged, regular maintenance has increased. The limb mechanism project we started almost 20 years ago was to deliver new types of inspection and maintenance to industrial fields. Our first prototype, a six-limb robot called Asterisk, included such capabilities as walking on ceilings, climbing and descending stairs and ladders, walking tightropes, and transversing rough terrain. Asterisk's latest version uses electromagnets to work in antigravity environments such as steel structures. Unfortunately, this presented a major danger, requiring that we replace electromagnets with electropermanent magnets (EPMs). Limitations on EPMs, however, required a new control strategy. We propose and compare three control methods -- open-loop control, closed-loop control using torque feedback, and closed-loop control using angle feedback -- in the sections that follow. Our objective is to determine the best control for inspection robots having electropermanent magnets but not using additional sensors.

2011 ◽  
Vol 22 (12) ◽  
pp. 1393-1407 ◽  
Author(s):  
HONGYUE DU

This paper investigates the modified function projective synchronization (MFPS) in drive-response dynamical networks (DRDNs) with different nodes, which means that systems in nodes are strictly different. An adaptive open-plus-closed-loop (AOPCL) control method is proposed, which is a practically realizable method and can overcome the model mismatched to achieve synchronization. It is well known that each of the close-loop and open-loop control method possesses some advantages and disadvantages. By combining their advantages, the open-plus-closed-loop (OPCL) control method was proposed by Jackson and Grosu. For arbitrary nonlinear dynamic systems, dx/dt = F(x,t), Jackson and Grosu proved that there exists solutions, x(t), in the neighborhood of any arbitrary goal dynamics g(t) that are entrained to g(t), through the use of an additive controlling action, K(g,x,t) = H(dg/dt,g) + C(g,t)(g(t) - x), which is the sum of the open-loop action, H(dg/dt,g), and a suitable linear closed-loop (feedback) action C(g,t). This method is a practically realizable method and robust to limited accuracy of data and effects of noise. The AOPCL control method preserve the merits of OPCL control method and its closed loop control part can be automatically adapted to suitable constants. Considering time-delays are always unavoidably in the practical situations, MFPS in DRDNs with time-varying coupling delayed is further investigated by the proposed method. Corresponding numerical simulations are performed to verify and illustrate the analytical results.


Author(s):  
Dazhou Geng ◽  
Qijuan Chen ◽  
Yang Zheng ◽  
Xuhui Yue ◽  
Donglin Yan

The stabilization of power take-off (PTO) is imperative especially under circumstances of fluctuating input wave energy. In this paper, a flow control valve is introduced to optimize the transient process of the hydraulic PTO, which can contribute to a quicker adjustment and a stronger stability. Under variations of input power and load torque in transient process, an open-loop control method and a closed-loop control method are proposed as the opening law of the above valve, and the hydraulic motor speed, the pressure at the accumulator inlet and the generated power are chosen as indicators to examine the regulation performance. Then, the synergic effect of the flow control valve and the accumulator in the transient process is discussed. The effectiveness of the two presented control methods on the fluctuation suppression is respectively tested and compared in both regular wave and irregular wave situations via simulation. To validate the practical effectiveness of the proposed methods, field experiments are conducted. The results demonstrate that the open-loop control can only improve the damping ability of the hydraulic PTO in the speed raising stage, while the closed-loop control can improve the stability both in the speed raising stage and in the load increasing stage.


Author(s):  
Daniel Guyot ◽  
Christian Oliver Paschereit

Active instability control was applied to an atmospheric swirl-stabilized premixed combustor using open loop and closed loop control schemes. Actuation was realised by two on-off valves allowing for symmetric and asymmetric modulation of the premix fuel flow while maintaining constant time averaged overall fuel mass flow. Pressure and heat release fluctuations in the combustor as well as NOx, CO and CO2 emissions in the exhaust were recorded. In the open loop circuit the heat release response of the flame was first investigated during stable combustion. For symmetric fuel modulation the dominant frequency in the heat release response was the modulation frequency, while for asymmetric modulation it was its first harmonic. In stable open loop control a reduction of NOx emissions due to fuel modulation of up to 19% was recorded. In the closed loop mode phase-shift control was applied while triggering the valves at the dominant oscillation frequency as well as at its second subharmonic. Both, open and closed loop control schemes were able to successfully control a low-frequency combustion instability, while showing only a small increase in NOx emissions compared to, for example, secondary fuel modulation. Using premixed open loop fuel modulation, attenuation was best when modulating the fuel at frequencies different from the dominant instability frequency and its subharmonic. The performance of asymmetric fuel modulation was generally slightly better than for symmetric modulation in terms of suppression levels as well as emissions. Suppression of the instability’s pressure rms level of up to 15.7 dB was recorded.


Author(s):  
Bao Tri Diep ◽  
Quoc Hung Nguyen ◽  
Thanh Danh Le

The purpose of this paper is to design a control algorithm for a 2-DoF rotary joystick model. Firstly, the structure of the joystick, which composes of two magneto-rheological fluid actuators (shorten MRFA) with optimal configuration coupled perpendicularly by the gimbal mechanism to generate the friction torque for each independent rotary movement, is introduced. The control strategy of the designed joystick is then suggested. Really, because of two independent rotary movements, it is necessary to design two corresponding controllers. Due to hysteresis and nonlinear dynamic characteristics of the MRFA, controllers based an accurate dynamic model are difficult to realize. Hence, to release this issue, the proposed controller (named self-turning fuzzy controllers-STFC) will be built through the fuzzy logic algorithm in which the parameters of controllers are learned and trained online by Levenberg-Marquardt training algorithm. Finally, an experimental apparatus will be constructed to assess the effectiveness of the force feedback controls. Herein, three experimental cases are performed to compare the control performance of open-loop and close-loop control method, where the former is done through relationship between the force at the knob and the current supplied to coil while the latter is realized based on the proposed controller and PID controller. The experimental results provide strongly the ability of the proposed controller, meaning that the STFC is robust and tracks well the desirable force with high accuracy compared with both the PID controller and the open-loop control method.


Author(s):  
Amit Pandey ◽  
Maurício de Oliveira ◽  
Chad M. Holcomb

Several techniques have recently been proposed to identify open-loop system models from input-output data obtained while the plant is operating under closed-loop control. So called multi-stage identification techniques are particularly useful in industrial applications where obtaining input-output information in the absence of closed-loop control is often difficult. These open-loop system models can then be employed in the design of more sophisticated closed-loop controllers. This paper introduces a methodology to identify linear open-loop models of gas turbine engines using a multi-stage identification procedure. The procedure utilizes closed-loop data to identify a closed-loop sensitivity function in the first stage and extracts the open-loop plant model in the second stage. The closed-loop data can be obtained by any sufficiently informative experiment from a plant in operation or simulation. We present simulation results here. This is the logical process to follow since using experimentation is often prohibitively expensive and unpractical. Both identification stages use standard open-loop identification techniques. We then propose a series of techniques to validate the accuracy of the identified models against first principles simulations in both the time and frequency domains. Finally, the potential to use these models for control design is discussed.


2018 ◽  
Vol 57 (49) ◽  
pp. 16795-16808
Author(s):  
Julián Cabrera-Ruiz ◽  
César Ramírez-Márquez ◽  
Shinji Hasebe ◽  
Salvador Hernández ◽  
J. Rafael Alcántara Avila

Sign in / Sign up

Export Citation Format

Share Document