scholarly journals USING THE SLP METHOD IN THE DESIGN OF FLEXIBLE MANUFACTURING CELLS

Author(s):  
Zsolt Molnár ◽  
Péter Tamás ◽  
Illés Béla

Flexible manufacturing systems are becoming increasingly important as customers increasingly want customized products. Also, the trend of the product life cycles to become shorter and shorter causes the proliferation of flexible manufacturing systems. Proper layout is key to making the manufacturing system truly flexible. Novel research and this article show how the Systematic Layout Planning method can be applied to the design of flexible manufacturing systems and, going further, how the design process can be supported by manufacturing process simulation.

2019 ◽  
Vol 957 ◽  
pp. 195-202 ◽  
Author(s):  
Elizaveta Gromova

With the onset of the Fourth Industrial Revolution, the business environment becomes inherent in changes that occur with maximum speed, as well as characterized by the systemic nature of the consequences. One of them is the transformation of operational management models in industrial enterprises. The modern manufacturing system should focus not only on speed of response and flexibility, but also on the cost and quality of products. Integration of effective models: agile manufacturing, quick response manufacturing and lean production, in order to extract the best from them is proposed. The purpose of this study is to analyze this flexible manufacturing system and to relate it to the current state of the Russian industrial development. Theoretical and practical aspects of this model are presented. The examples of the flexible models introduction in the Russian industrial sector is allocated. The conclusion about the necessity of the flexible manufacturing systems implementation for the Russian industrial development is drawn.


2013 ◽  
Vol 329 ◽  
pp. 172-175
Author(s):  
Jin Feng Wang ◽  
Guang Feng Zhang ◽  
Xian Zhang Feng

For the rigid automatic line, although its production efficiency is high, but the flexible is less in the machining process, the machine and the assembly line need be shut down to adjust or replace for machine tools, jigs, tools, and tooling equipment, etc. When the work pieces for the machining is changed. It caused a heavy workload, wasting a lot of time. Flexible Manufacturing Systems consisted of unified control system, material handling system and a set of digital control processing equipment; it is the automation machinery manufacturing system to adapt the processing object transform. It has become one of the important means of manufacturing industry to obtain the advantages of market competitiveness. This paper gives the composition, algorithm and application of learning system concept, composition, and classification, characteristics of the flexible manufacturing system, the development overview and its application are induced in this paper.


2013 ◽  
Vol 581 ◽  
pp. 527-532
Author(s):  
Peter Košťál ◽  
Daynier Rolando Delgado Sobrino

Flexible Manufacturing Systems provide a fast reaction possibility to the changes in production conditions. As production conditions change, other changes in the final product like changes of the product variants, or other unpredictable events may be also expected. For achieving a quick responsibility of production, it is necessary to leave the traditional form of production process planning. Nowadays most of the products are designed by using the CAx software. The product design 3D model contains not only the geometrical data of product, but may contain a part of the process plan and technological data as well.


2015 ◽  
Vol 799-800 ◽  
pp. 1410-1416
Author(s):  
Guanghsu A. Chang ◽  
William R. Peterson

Increasing global competition, shrinking product life cycles, and increasing product mix are defining a new manufacturing environment in world markets. This paper presents a case problem using Taguchi Method to find optimum design parameters for a Flexible Manufacturing System (FMS). A L8 array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to study performance characteristics of selected manufacturing system design parameters (e.g. layout, AGVs, buffers, and routings) with consideration of product mix demand. Various design and performance parameters are evaluated and compared for the original and the improved FMS. The results obtained by this method may be useful to other researchers for similar types of applications.


Author(s):  
Nadia Hamani ◽  
Nathalie Dangoumau ◽  
Etienne Craye

This paper focuses on formal verification and validation of a model dedicated to mode handling of flexible manufacturing systems. The model is specified using the synchronous formalism Safe State Machines. A structured framework for the design process is presented. The obtained model is characterized by a strong hierarchy and concurrency that is why within the design process an iterative approach for specification, verification and validation is propose in order to improve this process. The main properties being verified are presented and the approach is illustrated through an example of a manufacturing production cell.


Author(s):  
Jiliang Luo

An algorithm is proposed to equivalently transform original linear constraints on Petri nets, where the uncontrollable subnets are forward-concurrent free nets, into admissible ones. Consequently, this algorithm can be used to design both efficient and optimal supervisors for enforcing linear constraints on Petri nets since the problem on how to enforce admissible constraints has been well solved. Further, the supervisor synthesis procedure is presented using this algorithm. Lastly, it is illustrated by an example where an optimal supervisor is designed for a flexible manufacturing system.


Robotica ◽  
1985 ◽  
Vol 3 (4) ◽  
pp. 221-228 ◽  
Author(s):  
Norman Carter

SUMMARYThe introduction of Flexible Manufacturing Systems, Cell Technology, and Automated Machining Techniques with the related reduction in manning levels has resulted in the development of tooling systems, tool management systems, and, independent tool magazines to service TURNING MACHINES where a high number of tools are required to cover one shift or unmanned operation.Actual cutting time (production time) represents a value between 5% and 20% of average machine utilisation time, and developments in cutting materials and geometries have largely exhausted rationalisation possibilities in this area.


2010 ◽  
Vol 458 ◽  
pp. 48-54 ◽  
Author(s):  
T.J. Wu ◽  
Pei Huang Lou ◽  
Z.G. Man

Fixtures are used to locate and constrain firmly a workpiece during machining operation. Flexible and efficient fixturing has become an important issue in flexible manufacturing systems and computer integrated manufacturing system. Locating planning is the basis of the fixturing design, which has a direct influence on the quality of the clamping scheme and the machining quality of workpiece. This paper presents a new approach for locating planning of workpiece. Firstly, it will automatically select the primary locating surfaces with consideration of 5 influence factors: constraint freedoms, surface feature, valid locating area, tolerance relationship and surface roughness. Then the other locating surfaces are determined by retrieving similar workpieces under the guideline of 4 locating methods which will make the best of already available locating planning. Finally the optimal locator layout is fast achieved with GA with the goal of minimal locating tolerance.


Author(s):  
Nadia Hamani

This paper focuses on formal verification and validation of a model dedicated to mode handling of flexible manufacturing systems. The model is specified using the synchronous formalism Safe State Machines. A structured framework for the design process is presented. The obtained model is characterized by a strong hierarchy and concurrency that is why within the design process an iterative approach for specification, verification and validation is propose in order to improve this process. The main properties being verified are presented and the approach is illustrated through an example of a manufacturing production cell.


Sign in / Sign up

Export Citation Format

Share Document