scholarly journals THERMAL INTEGRATION OF COMPRESSION REFRIGERATION UNITS IN DAIRY FACILITIES

Author(s):  
Serhii Bykanov ◽  
Babak Tetiana Babak ◽  
Roman Stotskyi

The heat integration of an ammonia compression refrigeration unit, that is used in different dairy facilities, was carried out by the pinch analysis methods. The schematic diagram of such unit with a cooling capacity of 1000 kW was taken as a basis. The main cycle temperatures, refrigerant consumption and its specific heat capacity were calculated for a given refrigerating capacity. Based on these data, a stream table was formed, that included a hot stream of a refrigerant – ammonia – and also two cold streams: water for chemical water treatment and water for technology. The hot stream of ammonia was divided into three streams: cooling of ammonia vapors, condensation and subcooling. Heat capacities flowrates and heat loads (stream enthalpy change) of the streams were determined. The minimum temperature difference in heat exchangers DTmin = 8°С was determined on the basis of technical and economic calculations for this process. The composite curves were plotted for the minimum temperature difference. The pinch temperatures were determined by the problem table algorithm for the hot and cold streams. The minimum values of hot and cold utilities load (QHmin and QСmin) were determined. The heat recovery capacity was determined, which was 701.8 kW. A grid diagram was built and heat exchangers are arranged in accordance with CP and N rules. The retrofit of process flowsheet is proposed on the basis of the grid diagram that includes the installation of three heat exchangers, one cooler and two heaters to achieve the target temperatures and flow rates. The use of Alfa Laval plate heat exchangers is proposed as heat exchange equipment. The payback period of the design is about two years.

Author(s):  
P. Seshadri ◽  
Larry C. Witte

Abstract A method for finding the best (optimal) operating layout of heat exchangers in complicated thermal networks is developed in this paper. Computer algorithms are developed that take advantage of pinch technology and economic considerations, and exergetic constraints as well as conventional heat and mass balances. Our goals were to achieve minimum loss of exergy between hot and cold streams subject to practical system constraints. Furthermore, resulting networks should be limited to no more units than the theoretical minimum. The ultimate goal was to minimize investment and operating costs for a set of fixed overall system constaints. These goals were realized by developing a computer-based nonlinear multiple objective optimization algorithm that included the elements discussed above. The final solution is a synthesis of the best system using the above-described mathematical formulation. Results for a 4-stream heat exchanger network are presented in terms of the minimum temperature difference at the pinch point. The influence of the minimum temperature difference on capital cost, heat transfer area, exergetic losses and second law efficiency of various heat exchangers in the network is presented.


2019 ◽  
pp. 110-115
Author(s):  
L. M. Mironovich ◽  
A. Yu. Eliseev ◽  
A. Yu. Eliseeva

The paper studies complex effect of various factors on the process of cleaning brass brand L-68, used for the manufacture of heat exchange equipment. It has been established that acids of various strengths can be used as working solutions. The speed of the cleaning process depends on the nature of the acid and its initial concentration. For strong acids, a working solution with low concentration is recommended, followed by an increase in their concentration during the cleaning process. Additional input of oxygen into the system and an increase of the working solution temperature increase the cleaning rate of brass. The cleaning process proceeds without significant changes in the surface configuration, and, consequently, the expenditure of metal.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Jiuyi Liu ◽  
Caifu Qian ◽  
Huifang Li

Thermal stress is an important factor influencing the strength of a heat exchanger tubesheet. Some studies have indicated that, even in floating-head or U-tube heat exchangers, the thermal stress at the tubesheet is significant in magnitude. For exploring the value, distribution, and the influence factors of the thermal stress at the tubesheet of these kind heat exchangers, a tubesheet and triangle arranged tubes with the tube diameter of 25 mm were numerically analyzed. Specifically, the thermal stress at the tubesheet center is concentrated and analyzed with changing different parameters of the tubesheet, such as the temperature difference between tube-side and shell-side fluids, tubesheet diameter, thickness, and the tube-hole area ratio. It is found that the thermal stress of the tubesheet of floating-head or U-tube heat exchanger was comparable in magnitude with that produced by pressures, and the distribution of the thermal stress depends on the tube-hole area and the temperature inside the tubes. The thermal stress at the center of the tubesheet surface is high when tube-hole area ratio is very low. And with increasing the tube-hole area ratio, the stress first decreases rapidly and then increases linearly. A formula was numerically fitted for calculating the thermal stress at the tubesheet surface center which may be useful for the strength design of the tubesheet of floating-head or U-tube heat exchangers when considering the thermal stress. Numerical tests show that the fitted formula can meet the accuracy requirements for engineering applications.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 594
Author(s):  
Tao Zhou ◽  
Bingchao Chen ◽  
Huanling Liu

In recent years, in order to obtain a radiator with strong heat exchange capacity, researchers have proposed a lot of heat exchangers to improve heat exchange capacity significantly. However, the cooling abilities of heat exchangers designed by traditional design methods is limited even if the geometric parameters are optimized at the same time. However, using topology optimization to design heat exchangers can overcome this design limitation. Furthermore, researchers have used topology optimization theory to designed one-to-one and many-to-many inlet and outlet heat exchangers because it can effectively increase the heat dissipation rate. In particular, it can further decrease the hot-spot temperature for many-to-many inlet and outlet heat exchangers. Therefore, this article proposes novel heat exchangers with three inlets and one outlet designed by topology optimization to decrease the fluid temperature at the outlet. Subsequently, the effect of the channel depth on the heat exchanger design is also studied. The results show that the type of exchanger varies with the channel depth, and there exists a critical depth value for obtaining the minimum substrate temperature difference. Then, the flow and heat transfer performance of the heat exchangers are numerically investigated. The numerical results show that the heat exchanger derived by topology optimization with the minimum temperature difference as the goal (Model-2) is the best design for flow and heat transfer performance compared to other heat sink designs, including the heat exchanger derived by topology optimization having the average temperature as the goal (Model-1) and conventional straight channels (Model-3). The temperature difference of Model-1 can be reduced by 37.5%, and that of Model-2 can be decreased by 62.5% compared to Model-3. Compared with Model-3, the thermal resistance of Model-1 can be reduced by 21.86%, while that of Model-2 can be decreased by 47.99%. At room temperature, we carried out the forced convention experimental test for Model-2 to measure its physical parameters (temperature, pressure drop) to verify the numerical results. The error of the average wall temperature between experimental results and simulation results is within 2.6 K, while that of the fluid temperature between the experimental and simulation results is within 1.4 K, and the maximum deviation of the measured Nu and simulated Nu was less than 5%. This indicated that the numerical results agreed well with the experimental results.


1994 ◽  
Vol 35 (5) ◽  
pp. 715-732 ◽  
Author(s):  
Igor I. Taubkin ◽  
Michael A. Trishenkov ◽  
Nikolai V. Vasilchenko

2015 ◽  
Vol 76 (11) ◽  
Author(s):  
Muhammad Nuriyadi ◽  
Sumeru Sumeru ◽  
Henry Nasution

This study presents the effect of liquid-suction heat exchangers (LSHX) sub-cooler in a freezer. The LSHX sub-cooler is a method to increase the cooling capacity of the evaporator by lowering temperature at the condenser outlet. The decrease in temperature of the condenser outlet will cause a decrease in the quality refrigerant entering the evaporator. The lower the quality of the refrigerant entering the evaporator, the higher the cooling capacity produced by the evaporator. The LSHX sub-cooler utilizes a heat exchanger to transfer heat from the outlet of the condenser (liquid line) to the suction of the compressor. In the present study, three different LSHX sub-coolers in the freezer with cabin temperature settings of 0, -10 and -20oC were investigated. The results showed that the lowest and the highest of effectiveness of the heat exchanger were 0.28 and 0.58, respectively. The experimental results also showed that EER reduction is occurred at the cabin temperature setting of 0oC and -10oC, whereas the EER improvements were always occurred at the cabin temperature settings of -20oC.


Author(s):  
I.O. Mikulionok

The possibility of use of the heat-exchangers in whole or in part manufactured with use of polymers and plastics is considered. Despite obvious, at first sight, inexpediency of use of polymeric materials in the heat-exchange equipment (low coefficient of heat conductivity, and also low, in comparison with metals, the strength properties of the majority of the most widespread polymers), «polymeric» heat-exchangers find application in various areas of the industry more and more surely. Classification of heat-exchange apparatuses which constructive elements are executed with use of polymeric materials is proposed. The following signs are the basis for classification: polymer type, a type of polymer meric material, type of the heat-exchange apparatus (a form of heat-exchange elements), reliance on polymeric materials in apparatuses, motion freedom of polymeric heat-exchange elements, level of assembly of a design, and also diameter of tubular elements. Critical analysis the most characteristic designs developed by domestic and foreign designers and inventors is carried out. Ref. 21, Fig. 13.


Sign in / Sign up

Export Citation Format

Share Document