polymers and plastics
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 19)

H-INDEX

7
(FIVE YEARS 1)

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1447
Author(s):  
Daniel Weber ◽  
Tina He ◽  
Matthew Wong ◽  
Christian Moon ◽  
Axel Zhang ◽  
...  

The catalytic conversion of CO2 to value-added chemicals and fuels has been long regarded as a promising approach to the mitigation of CO2 emissions if green hydrogen is used. Light olefins, particularly ethylene and propylene, as building blocks for polymers and plastics, are currently produced primarily from CO2-generating fossil resources. The identification of highly efficient catalysts with selective pathways for light olefin production from CO2 is a high-reward goal, but it has serious technical challenges, such as low selectivity and catalyst deactivation. In this review, we first provide a brief summary of the two dominant reaction pathways (CO2-Fischer-Tropsch and MeOH-mediated pathways), mechanistic insights, and catalytic materials for CO2 hydrogenation to light olefins. Then, we list the main deactivation mechanisms caused by carbon deposition, water formation, phase transformation and metal sintering/agglomeration. Finally, we detail the recent progress on catalyst development for enhanced olefin yields and catalyst stability by the following catalyst functionalities: (1) the promoter effect, (2) the support effect, (3) the bifunctional composite catalyst effect, and (4) the structure effect. The main focus of this review is to provide a useful resource for researchers to correlate catalyst deactivation and the recent research effort on catalyst development for enhanced olefin yields and catalyst stability.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012169
Author(s):  
V M Kovalskii ◽  
A A Grin ◽  
V V Krylov ◽  
A A Vorotnikov

Abstract The X-ray transparency of various polymers and plastics is one of the most important factors in the choice of material in the design of new medical robotic and mechatronic systems and complexes. Along with the radiolucency, such a parameter as material inhomogeneity is also one of the main ones. The inhomogeneity of the material can not only affect the radiolucency of individual areas of the product but also impose restrictions on the use of polymeric materials by changing the physical and mechanical properties of the products. In this work, a technique was proposed for determining the location of regions of interest with reliable values on a CT image. Data were obtained for the values of the parameter HU and standard deviation for various polymer materials. A technique was proposed for determining the degree of heterogeneity of polymeric materials. The values of the degree of heterogeneity were obtained for all investigated materials.


2021 ◽  
Vol 29 (6) ◽  
pp. 30-36
Author(s):  
Han Wu ◽  
Duncan Stacey

Abstract:X-ray diffraction (XRD) is a fingerprint technique for the analysis of atomic and molecular structures of crystalline materials, from polymers and plastics, through to structural composites and biomaterials. These all have crystallographic phases in the nanostructure, which greatly influence the macro properties of the material—from insulin and hemoglobin to semiconductors and solar cells. Here, we look at how XRD analysis using a small- and wide-angle X-ray scattering (SAXS/WAXS) system under full vacuum brings the possibility of crystallographic sample characterization, with temperature and environmental control, direct to the laboratory, and how this improves the workflow for phase identification.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1845
Author(s):  
Yuan Zhao ◽  
Bo Li ◽  
Cuicui Li ◽  
Yangfan Xu ◽  
Yi Luo ◽  
...  

Edible packaging is a sustainable product and technology that uses one kind of “food” (an edible material) to package another kind of food (a packaged product), and organically integrates food with packaging through ingenious material design. Polysaccharides are a reliable source of edible packaging materials with excellent renewable, biodegradable, and biocompatible properties, as well as antioxidant and antimicrobial activities. Using polysaccharide-based materials effectively reduces the dependence on petroleum resources, decreases the carbon footprint of the “product-packaging” system, and provides a “zero-emission” scheme. To date, they have been commercialized and developed rapidly in the food (e.g., fruits and vegetables, meat, nuts, confectioneries, and delicatessens, etc.) packaging industry. However, compared with petroleum-based polymers and plastics, polysaccharides still have limitations in film-forming, mechanical, barrier, and protective properties. Therefore, they need to be improved by reasonable material modifications (chemical or physical modification). This article comprehensively reviews recent research advances, hot issues, and trends of polysaccharide-based materials in edible packaging. Emphasis is given to fundamental compositions and properties, functional modifications, food-packaging applications, and safety risk assessment of polysaccharides (including cellulose, hemicellulose, starch, chitosan, and polysaccharide gums). Therefore, to provide a reference for the development of modern edible packaging.


2021 ◽  
Vol 13 (15) ◽  
pp. 8218
Author(s):  
Graeme Moad ◽  
David Henry Solomon

Plastics have been revolutionary in numerous sectors, and many of the positive attributes of modern life can be attributed to their use. However, plastics are often treated only as disposable commodities, which has led to the ever-increasing accumulation of plastic and plastic by-products in the environment as waste, and an unacceptable growth of microplastic and nanoplastic pollution. The catchphrase “plastics are everywhere”, perhaps once seen as extolling the virtues of plastics, is now seen by most as a potential or actual threat. Scientists are confronting this environmental crisis, both by developing recycling methods to deal with the legacy of plastic waste, and by highlighting the need to develop and implement effective whole-of-life strategies in the future use of plastic materials. The importance and topicality of this subject are evidenced by the dramatic increase in the use of terms such as “whole of life”, “life-cycle assessment”, “circular economy” and “sustainable polymers” in the scientific and broader literature. Effective solutions, however, are still to be forthcoming. In this review, we assess the potential for implementing whole-of-life strategies for plastics to achieve our vision of a circular economy. In this context, we consider the ways in which given plastics might be recycled into the same plastic for potential use in the same application, with minimal material loss, the lowest energy cost, and the least potential for polluting the environment.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 646
Author(s):  
Anamaria Todea ◽  
Diana Maria Dreavă ◽  
Ioana Cristina Benea ◽  
Ioan Bîtcan ◽  
Francisc Peter ◽  
...  

New technologies for the conversion of biomass into high-value chemicals, including polymers and plastics, is a must and a challenge. The development of green processes in the last decade involved a continuous increase of the interest towards the synthesis of polymers using in vitro biocatalysis. Among the remarkable diversity of new bio-based polymeric products meeting the criteria of sustainability, biocompatibility, and eco-friendliness, a wide range of polyesters with shorter chain length were obtained and characterized, targeting biomedical and cosmetic applications. In this review, selected examples of such specialty polymers are presented, highlighting the recent developments concerning the use of lipases, mostly in immobilized form, for the green synthesis of e-caprolactone co-polymers, polyesters with itaconate or furan units, estolides, and polyesteramides. The significant process parameters influencing the average molecular weights and other characteristics are discussed, revealing the advantages and limitations of biocatalytic processes for the synthesis of these bio-based polymers.


ChemSusChem ◽  
2021 ◽  
Author(s):  
Christina Jönsson ◽  
Ren Wei ◽  
Antonino Biundo ◽  
Johan Landberg ◽  
Lisa Schwarz Bour ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 119-128
Author(s):  
D. V. Sevast’yanov ◽  
M. I. Daskovskii ◽  
E. A. Shein ◽  
S. Yu. Skripachev ◽  
Z. Usagava ◽  
...  

2021 ◽  
Vol 60 ◽  
pp. 146-158
Author(s):  
Alessandro Pellis ◽  
Mario Malinconico ◽  
Alice Guarneri ◽  
Lucia Gardossi

Sign in / Sign up

Export Citation Format

Share Document