scholarly journals Solving a multicriteria scheduling problem using a genetic algorithm

2021 ◽  
Vol 5 (1) ◽  
pp. 100-106
Author(s):  
Alina Kazmirchuk ◽  
Olena Zhdanova ◽  
Volodymyr Popenko ◽  
Maiia Sperkach

The work is devoted to the multiobjective task of scheduling, in which a given set of works must be performed by several performers of different productivity. A certain number of bonuses is accrued for the work performed by the respective executor, which depends on the time of work performance. The criteria for evaluating the schedule are the total time of all jobs and the amount of bonuses spent. In the research the main approaches to solving multiobjective optimization problems were analyzed, based on which the Pareto approach was chosen. The genetic algorithm was chosen as the algorithm. The purpose of this work is to increase the efficiency of solving multicriteria optimization problems by implementing a heuristic algorithm and increase its speed. The tasks of the work are to determine the advantages and disadvantages of the approaches used to solve multicriteria optimization problems, to develop a genetic algorithm for solving the multicriteria scheduling problem and to study its efficiency. Operators of the genetic algorithm have been developed, which take into account the peculiarities of the researched problem and allow to obtain Pareto solutions in the process of work. Due to the introduction of parallel calculations in the implementation of the genetic algorithm, it was possible to increase its speed compared to the conventional version. The developed algorithm can be used in solving the problem of optimal allocation of resources, which is part of the system of accrual of bonuses to employees.

Author(s):  
Shun Otake ◽  
◽  
Tomohiro Yoshikawa ◽  
Takeshi Furuhashi

Genetic Algorithms (GAs) have been widely applied to Multiobjective Optimization Problems (MOPs), called MOGA. A set of Pareto solutions in MOPs having plural fitness functions are searched, then GA is applied in a multipoint search. MOGA performance decreases with the increasing number of objective functions because solution space spreads exponentially. An effective MOGA search is an important issue in many objective optimization problems. One effective approach is assembling objective functions and reducing their number, but appropriate assembly and the number of objective functions to be assembled has not been studied sufficiently. Our purpose here is to determine the effects of assembling objective functions by studying assembly effects when MOGA is applied to a simplified Nurse Scheduling Problem (sNSP) in two types of assembly based on objective function meaning and correlation coefficients.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Qiang Long ◽  
Changzhi Wu ◽  
Xiangyu Wang ◽  
Lin Jiang ◽  
Jueyou Li

Multiobjective genetic algorithm (MOGA) is a direct search method for multiobjective optimization problems. It is based on the process of the genetic algorithm; the population-based property of the genetic algorithm is well applied in MOGAs. Comparing with the traditional multiobjective algorithm whose aim is to find a single Pareto solution, the MOGA intends to identify numbers of Pareto solutions. During the process of solving multiobjective optimization problems using genetic algorithm, one needs to consider the elitism and diversity of solutions. But, normally, there are some trade-offs between the elitism and diversity. For some multiobjective problems, elitism and diversity are conflicting with each other. Therefore, solutions obtained by applying MOGAs have to be balanced with respect to elitism and diversity. In this paper, we propose metrics to numerically measure the elitism and diversity of solutions, and the optimum order method is applied to identify these solutions with better elitism and diversity metrics. We test the proposed method by some well-known benchmarks and compare its numerical performance with other MOGAs; the result shows that the proposed method is efficient and robust.


2012 ◽  
Vol 217-219 ◽  
pp. 1444-1448
Author(s):  
Xiang Ke Tian ◽  
Jian Wang

The job-shop scheduling problem (JSP), which is one of the best-known machine scheduling problems, is among the hardest combinatorial optimization problems. In this paper, the key technology of building simulation model in Plant Simulation is researched and also the build-in genetic algorithm of optimizing module is used to optimize job-shop scheduling, which can assure the scientific decision. At last, an example is used to illustrate the optimization process of the Job-Shop scheduling problem with Plant Simulation genetic algorithm modules.


2011 ◽  
Vol 467-469 ◽  
pp. 2129-2136
Author(s):  
Tung Kuan Liu ◽  
Hsin Yuan Chang ◽  
Wen Ping Wu ◽  
Chiu Hung Chen ◽  
Min Rong Ho

This paper proposes a novel multiobjective genetic algorithm (MOGA), Evaluated Preference Genetic Algorithm (EPGA), for efficiently solving engineering multiobjective optimization problems. EPGA utilizes a preferred objective vector to perform a fast multiobjective ranking schema within a low computation complexity O(MNlogN) where N is the size of genetic population and M is the number of objectives. For verifying the proposed algorithms, this paper studies two engineering problems in which multiple mutual-conflicted objectives should be considered. According to the experimental results, the proposed EPGA can efficiently explore the Pareto front and provide very good solution capabilities for the engineering optimization problems.


Author(s):  
I Made Wartana ◽  
Ni Putu Agustini ◽  
Jai Govind Singh

In recent decades, one of the main management’s concerns of professional engineers is the optimal integration of various types of renewable energy to the grid. This paper discusses the optimal allocation of one type of renewable energy i.e. wind turbine to the grid for enhancing network’s performance. A multi-objective function is used as indexes of the system’s performance, such as increasing system loadability and minimizing the loss of real power transmission line by considering security and stability of systems’ constraints viz.: voltage and line margins, and eigenvalues as well which is representing as small signal stability. To solve the optimization problems, a new method has been developed using a novel variant of the Genetic Algorithm (GA), specifically known as Non-dominated Sorting Genetic Algorithm II (NSGA-II). Whereas the Fuzzy-based mechanism is used to support the decision makers prefer the best compromise solution from the Pareto front. The effectiveness of the developed method has been established on a modified IEEE 14-bus system with wind turbine system, and their simulation results showed that the dynamic performance of the power system can be effectively improved by considering the stability and security of the system.


2000 ◽  
Vol 8 (2) ◽  
pp. 149-172 ◽  
Author(s):  
Joshua D. Knowles ◽  
David W. Corne

We introduce a simple evolution scheme for multiobjective optimization problems, called the Pareto Archived Evolution Strategy (PAES). We argue that PAES may represent the simplest possible nontrivial algorithm capable of generating diverse solutions in the Pareto optimal set. The algorithm, in its simplest form, is a (1+1) evolution strategy employing local search but using a reference archive of previously found solutions in order to identify the approximate dominance ranking of the current and candidate solution vectors. (1+1)-PAES is intended to be a baseline approach against which more involved methods may be compared. It may also serve well in some real-world applications when local search seems superior to or competitive with population-based methods. We introduce (1+λ) and (μ+λ) variants of PAES as extensions to the basic algorithm. Six variants of PAES are compared to variants of the Niched Pareto Genetic Algorithm and the Nondominated Sorting Genetic Algorithm over a diverse suite of six test functions. Results are analyzed and presented using techniques that reduce the attainment surfaces generated from several optimization runs into a set of univariate distributions. This allows standard statistical analysis to be carried out for comparative purposes. Our results provide strong evidence that PAES performs consistently well on a range of multiobjective optimization tasks.


Sign in / Sign up

Export Citation Format

Share Document