scholarly journals Human-robot collision predictor for flexible assembly

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 72
Author(s):  
Imre Paniti ◽  
János Nacsa ◽  
Péter Kovács ◽  
Dávid Szur

<p class="Abstract"><span lang="EN-US">The performance of human–robot collaboration can be improved in some assembly tasks when a robot emulates the effective coordination behaviours observed in human teams. However, this close collaboration could cause collisions, resulting in delays in the initial scheduling. Besides the commonly used acoustic or visual signals, vibrations from a mobile device can be used to communicate the intention of a collaborative robot (cobot). In this paper, the communication time of a virtual reality and depth camera-based system is presented in which vibration signals are used to alert the user of a probable collision with a UR5 cobot. Preliminary tests are carried out on human reaction time and network communication time measurements to achieve an initial picture of the collision predictor system’s performance. Experimental tests are also presented in an assembly task with a three-finger gripper that functions as a flexible assembly device.</span></p>

Author(s):  
Asad Tirmizi ◽  
Patricia Leconte ◽  
Karel Janssen ◽  
Jean Hoyos ◽  
Maarten Witters

This chapter proposes a framework to make the programming of cobots faster, user-friendly and flexible for assembly tasks. The work focusses on an industrial case of a small (10kg) air compressor and investigates the technologies that can be used to automate this task with human-robot collaboration. To this end, the framework takes a radically different approach at the motion stack level and integrates the cobot with a constraint-based robot programming paradigm that enhances the robot programming possibilities. Additionally, the framework takes inputs from the operator via speech recognition and computer vision to increase the intuitiveness of the programing process. An implementation is made with focus on industrial robustness and the results show that this framework is a promising approach for the overall goal of achieving flexible assembly in the factories by making robot programming faster and intuitive.


Author(s):  
ONKAR L. MAHAJAN ◽  
ABHAY A. UTPAT

In deep groove ball bearings contamination of lubricant grease by solid particles is one of the main reason for early bearing failure. To deal with such problem, it is fundamental not only the use of reliable techniques concerning detection of solid contamination but also the investigation of the effects of certain contaminant characteristics on bearing performance. Nowadays the techniques such as vibration measurements are being increasingly used for on-time monitoring of machinery performance. The present work investigates the effect of lubricant contamination by solid particles on the dynamic behavior of rolling bearings, in order to determine the trends in the amounts of vibration affected by contamination in the Grease and by the bearing wear itself. Experimental tests are performed with Deep-groove ball bearings. The Dolomite powder in three concentration levels and different particle sizes was used to contaminate the grease. Vibration signals were analyzed in terms of Root Mean Square (RMS) values and also in terms of defect frequencies.


Author(s):  
Carlos W. Morato ◽  
Krishnanand N. Kaipa ◽  
Satyandra K. Gupta

Hybrid assembly cells allow humans and robots to collaborate on assembly tasks. We consider a model of the hybrid cell in which a human and a robot asynchronously collaborate to assemble a product. The human retrieves parts from a bin and places them in the robot’s workspace, while the robot picks up the placed parts and assembles them into the product. Realizing hybrid cells requires -automated plan generation, system state monitoring, and contingency handling. In this paper we describe system state monitoring and present a characterization of the part matching algorithm. Finally, we report results from human-robot collaboration experiments using a KUKA robot and a 3D-printed mockup of a simplified jet-engine assembly to illustrate our approach.


Author(s):  
Jun Huang ◽  
Duc Truong Pham ◽  
Yongjing Wang ◽  
Mo Qu ◽  
Chunqian Ji ◽  
...  

Human–robot collaborative disassembly is an approach designed to mitigate the effects of uncertainties associated with the condition of end-of-life products returned for remanufacturing. This flexible semi-autonomous approach can also handle unpredictability in the frequency and numbers of such returns as well as variance in the remanufacturing process. This article focusses on disassembly, which is the first and arguably the most critical step in remanufacturing. The article presents a new method for disassembling press-fitted components using human–robot collaboration based on the active compliance provided by a collaborative robot. The article first introduces the concepts of human–robot collaborative disassembly and outlines the method of active compliance control. It then details a case study designed to demonstrate the proposed method. The study involved the disassembly of an automotive water pump by a collaborative industrial robot working with a human operator to take apart components that had been press-fitted together. The results show the feasibility of the proposed method.


2019 ◽  
Vol 20 (1) ◽  
pp. 102-133 ◽  
Author(s):  
Ilias El Makrini ◽  
Kelly Merckaert ◽  
Joris De Winter ◽  
Dirk Lefeber ◽  
Bram Vanderborght

Abstract Human-robot collaboration, whereby the human and the robot join their forces to achieve a task, opens new application opportunities in manufacturing. Robots can perform precise and repetitive operations while humans can execute tasks that require dexterity and problem-solving abilities. Moreover, collaborative robots can take over heavy-duty tasks. Musculoskeletal disorders (MSDs) are a serious health concern and the primary cause of absenteeism at work. While the role of the human is still essential in flexible production environment, the robot can help decreasing the workload of workers. This paper describes a novel framework for task allocation of human-robot assembly applications based on capabilities and ergonomics considerations. Capable agents are determined on the basis of agent characteristics and task requirements. Ergonomics is integrated by measuring the human body posture and the related workload. The developed framework was validated on a gearbox assembly use case using the collaborative robot Baxter.


Author(s):  
Thomas Smith ◽  
Panorios Benardos ◽  
David Branson

The aim of this research is to develop a framework to allow efficient human robot collaboration on manufacturing assembly tasks based on cost functions that quantify capabilities and performance of each element in a system and enable their efficient evaluation. A proposed cost function format is developed along with initial development of two example cost function variables, completion time and fatigue, obtained as each worker is completing assembly tasks. The cost function format and example variables were tested with two example tasks utilizing an ABB YuMi Robot in addition to a simulated human worker under various levels of fatigue. The total costs produced clearly identified the best worker to complete each task with these costs also clearly indicating when a human worker is fatigued to a greater or lesser degree than expected.


Author(s):  
Sharath Chandra Akkaladevi ◽  
Matthias Propst ◽  
Michael Hofmann ◽  
Leopold Hiesmair ◽  
Markus Ikeda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document