scholarly journals An IoT measurement solution for continuous indoor environmental quality monitoring for buildings renovation

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 230
Author(s):  
Serena Serroni ◽  
Marco Arnesano ◽  
Luca Violini ◽  
Gian Marco Revel

The measurement of Indoor Environmental Quality (IEQ) requires the acquisition of multiple quantities regarding thermal comfort and indoor air quality. The IEQ monitoring is essential to investigate the building’s performance, especially when renovation is needed to improve energy efficiency and occupants’ well-being. Thus, IEQ data should be acquired for long periods inside occupied buildings, but traditional measurement solutions could not be adequate. This paper presents the development and application of a non-intrusive and scalable IoT sensing solution for continuous IEQ measurement in occupied buildings during the renovation process. The solution is composed of an IR scanner for mean radiant temperature measurement and a desk node with environmental sensors (air temperature, relative humidity, CO2, PMs). The integration with a BIM-based renovation approach was developed to automatically retrieve building’s data required for sensor configuration and KPIs calculation. The system was installed in a nursery located in Poland to support the renovation process. IEQ performance measured before the intervention revealed issues related to radiant temperature and air quality. Using measured data, interventions were realized to improve the envelope insulation and the occupant’s behaviour. Results from post-renovation measurements showed the IEQ improvement achieved, demonstrating the impact of the sensing solution.

2017 ◽  
Vol 12 (1) ◽  
pp. 123-141 ◽  
Author(s):  
Ahmed Radwan ◽  
Mohamed H. Issa

This exploratory research aims to evaluate indoor environmental quality in the classrooms of three school buildings in Southern Manitoba, Canada, and to evaluate the well-being of these schools' teachers as it pertains to their perception of their classrooms' indoor environment. The schools include a middle-aged, conventional school; a new, non-green school; and a new, green school certified using the Leadership in Energy and Environmental Design rating system. The methodology involved using a mobile instrument cart to conduct snapshot measurements of thermal comfort, indoor air quality, lighting and acoustics in classrooms and an occupant survey to evaluate teachers' long-term satisfaction with their classrooms' indoor environmental quality. The results showed that the new, green and new, non-green schools' classrooms performed better than the conventional, middle-aged school's classrooms with respect to some aspects of thermal comfort and indoor air quality only. Teachers in the new, green school and in the new, non-green school were more satisfied than teachers in the conventional, middle-aged school with their classrooms' overall indoor environmental quality, lighting quality and indoor air quality. Surprisingly, the new, green and new-non green school classrooms' performance were very comparable with the new, green school's classrooms performing statistically significantly better with respect to relative humidity. Similarly, none of the differences in teachers' satisfaction ratings between the new, green and new, non-green school were statistically significant.


Author(s):  
Mohamad Awada ◽  
Burcin Becerik-Gerber ◽  
Gale Lucas ◽  
Shawn Roll

Abstract The outbreak of SARS-CoV-2 virus forced office workers to conduct their daily work activities from home over an extended period. Given this unique situation, an opportunity emerged to study the satisfaction of office workers with indoor environmental quality (IEQ) factors of their houses where work activities took place and associate these factors with mental and physical health. We designed and administered a questionnaire that was open for 45 days during the COVID-19 pandemic and received valid data from 988 respondents. The results show that low satisfaction with natural lighting, glare and humidity predicted eye related symptoms, while low satisfaction with noise was a strong predictor of fatigue or tiredness, headaches or migraines, anxiety, and depression or sadness. Nose and throat related symptoms and skin related symptoms were only uniquely predicted by low satisfaction with humidity. Low satisfaction with glare uniquely predicted an increase in musculoskeletal discomfort. Symptoms related to mental stress, rumination or worry were predicted by low satisfaction with air quality and noise. Finally, low satisfaction with noise and indoor temperature predicted the prevalence of symptoms related to trouble concentrating, maintaining attention or focus. Workers with higher income were more satisfied with humidity, air quality and indoor temperature and had better overall mental health. Older individuals had increased satisfaction with natural lighting, humidity, air quality, noise, and indoor temperature. Findings from this study can inform future design practices that focus on hybrid home-work environments by highlighting the impact of IEQ factors on occupant well-being.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


2018 ◽  
Vol 11 (3) ◽  
pp. 353-398 ◽  
Author(s):  
Michael J. McCord ◽  
Sean MacIntyre ◽  
Paul Bidanset ◽  
Daniel Lo ◽  
Peadar Davis

Purpose Air quality, noise and proximity to urban infrastructure can arguably have an important impact on the quality of life. Environmental quality (the price of good health) has become a central tenet for consumer choice in urban locales when deciding on a residential neighbourhood. Unlike the market for most tangible goods, the market for environmental quality does not yield an observable per unit price effect. As no explicit price exists for a unit of environmental quality, this paper aims to use the housing market to derive its implicit price and test whether these constituent elements of health and well-being are indeed capitalised into property prices and thus implicitly priced in the market place. Design/methodology/approach A considerable number of studies have used hedonic pricing models by incorporating spatial effects to assess the impact of air quality, noise and proximity to noise pollutants on property market pricing. This study presents a spatial analysis of air quality and noise pollution and their association with house prices, using 2,501 sale transactions for the period 2013. To assess the impact of the pollutants, three different spatial modelling approaches are used, namely, ordinary least squares using spatial dummies, a geographically weighted regression (GWR) and a spatial lag model (SLM). Findings The findings suggest that air quality pollutants have an adverse impact on house prices, which fluctuate across the urban area. The analysis suggests that the noise level does matter, although this varies significantly over the urban setting and varies by source. Originality/value Air quality and environmental noise pollution are important concerns for health and well-being. Noise impact seems to depend not only on the noise intensity to which dwellings are exposed but also on the nature of the noise source. This may suggest the presence of other externalities that arouse social aversion. This research presents an original study utilising advanced spatial modelling approaches. The research has value in further understanding the market impact of environmental factors and in providing findings to support local air zone management strategies, noise abatement and management strategies and is of value to the wider urban planning and public health disciplines.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1481 ◽  
Author(s):  
Michał Piasecki ◽  
Krystyna Kostyrko ◽  
Małgorzata Fedorczak-Cisak ◽  
Katarzyna Nowak

The authors studied the impact of indoor air humidity in the range of 60% to 90% on building user perception in the temperature range of 26 to 28 °C. The research thesis was put forward that the impact of humidity on indoor air quality dissatisfaction of building users in a warm and humid indoor environment is greater than that indicated in thermal comfort models. The presented experiment examined the indoor air quality perception of n = 28 subjects in the test chamber of a nearly zero energy building under ten environmental conditions, together with a thermal comfort assessment. The authors developed an experimental relation for predicting building users’ satisfaction based on the Weber–Fechner law, where the predicted percentage of dissatisfied users (PD) is determined by means of air enthalpy (h), PD = f(h). The obtained results confirmed the sated thesis. Additionally, the intersection points of the experimental function and isotherms resulting from the Fanger model are presented, where the thermal comfort assessment starts to indicate lower user dissatisfaction results than experimental values. The authors recommend the experimental equation for humid air enthalpies in the range of 50 to 90 kJ/kg. The indoor air quality assessment based on the enthalpy value is simple and can be used to determine the overall Indoor Environmental Quality index of a building (IEQindex).


2015 ◽  
Vol 75 (1) ◽  
Author(s):  
Farid-Wajdi Akashah ◽  
Azlan Shah Ali ◽  
Siti Fatunah Mohd Zahari

POE is important to evaluate comfort level and satisfaction of building occupants because it indicates their productivity, health, and wellbeing. It is absolutely necessary to ensure building occupants are comfortable and satisfied about buildings’ indoor environmental quality (IEQ). Productivity may be interrupted due to building occupants’ discomfort, which affect their work performance. This study presents the how comfort and satisfaction affects the occupants’ productivity in conventional-designed buildings. Five office buildings located in University of Malaya were selected as the case studies. 278 questionnaires feedbacks found to be useful to form a database on the IEQ. Data obtained were analyzed using SPSS software. The findings shows that majority of the respondents in conventional-designed building were slightly comfortable and satisfied about their IEQ comfort level which were indoor air quality, thermal, lighting, and noise comforts. Although, the design of conventional buildings did not taking into account on sustainability designing, it still functionally well and provided comfort which leads to increasing of employees productivity. The associative test showed significant correlation between illness symptom and IEQ components. Admin buildings had more noticeable illness symptoms in contrast with Faculty buildings. It could be concluded that building occupants’ productivity were least affected by the conventional-design building.  


2018 ◽  
Vol 42 (3) ◽  
pp. 336-362 ◽  
Author(s):  
Mohammad Tahsildoost ◽  
Zahra S Zomorodian

Indoor Environmental Quality is an important issue in educational buildings since it is directly related to students’ well-being and learning activities. Indoor Environmental Quality parameters have been assessed in three representative campus building typologies (old, new, and retrofitted), in Tehran, Iran, by measurements and questionnaire (n = 842) from July 2016 to April 2017. Results have been compared to the students’ overall satisfaction level and recommended standards. According to results, minimum attention to local standards with regard to Indoor Air Quality, acoustic, and lighting, especially in the old and retrofitted buildings, seems the main reason of low environmental quality in the studied cases. Fitting a multiple regression model to the questionnaire data, a mathematical model is developed to predict the overall comfort (Indoor Environmental Quality index). Studied buildings have been ranked based on the Indoor Environmental Quality index from high quality: I (building C) to out of the comfort range: IV (building A). Moreover, results reveal that the acceptable range of each Indoor Environmental Quality parameters, especially with regard to thermal and acoustic comfort, is broader in real condition in comparison with the standards. Finally, the buildings’ annual energy consumption is used to propose a Retrofit Potential Index in order to assess the impact of comfort parameters on energy consumption by integrated analyses.


2020 ◽  
Vol 12 (16) ◽  
pp. 6453 ◽  
Author(s):  
Catarina Ribeiro ◽  
Nuno M. M. Ramos ◽  
Inês Flores-Colen

Balconies are an ancient architectural archetype that are being increasingly considered in multi-family buildings of high-density cities. This paper aims to provide a comprehensive review of the impacts of balcony types on the indoor environmental quality (IEQ) and energy consumption of dwellings. Of the reviewed studies, 69% were published during the last decade, making it evident that awareness of the positive impact of balcony spaces is continuously increasing. The literature review allowed us to identify three balcony spaces according to their morphology and their boundary system: open balcony (OB), glazed balcony (GB), and eliminate balcony (EB). It was concluded that these balcony types produce relevant impacts in four factors that contribute to the indoor environmental quality: thermal comfort, indoor air quality, visual comfort, and acoustic comfort. Practical design recommendations and constraints were provided according to distinct climatic conditions and building technologies. This review also explored the assessment methodologies used for the optimization of the balconies on the design process. The literature highlighted the lack of a comprehensive study about the impact of balconies in mild and Mediterranean climates, as well as the knowledge limitations concerning the balance between the impacts on IEQ factors.


Prostor ◽  
2020 ◽  
Vol 28 (2 (60)) ◽  
pp. 346-359
Author(s):  
Vesna Lovec ◽  
Miroslav Premrov ◽  
Vesna Žegarac Leskovar

The majority of kindergartens situated in the territory of former Yugoslavia need renovation. Apart from their enhanced energy efficiency, renovated buildings will presumably offer better indoor environmental quality. According to the current case study, children using a classroom with new windows installed are exposed to substantially poorer indoor air quality due to airtightness and improper ventilation, which calls attention to a vital technical issue of the current renovation process.


Sign in / Sign up

Export Citation Format

Share Document