scholarly journals Loss of epithelial AR increase castration resistant stem-like prostate cancer cells and promotes cancer metastasis via TGF-β1/EMT pathway

2020 ◽  
Vol 9 (3) ◽  
pp. 1013-1027
Author(s):  
Qiliang Cai ◽  
Yegang Chen ◽  
Dingnrong Zhang ◽  
Jiancheng Pan ◽  
Zunke Xie ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ding-fang Zhang ◽  
Zhi-chun Yang ◽  
Jian-qiang Chen ◽  
Xiang-xiang Jin ◽  
Yin-da Qiu ◽  
...  

Abstract Background Metastatic castration-resistant prostate cancer (CRPC) is the leading cause of death among men diagnosed with prostate cancer. Piperlongumine (PL) is a novel potential anticancer agent that has been demonstrated to exhibit anticancer efficacy against prostate cancer cells. However, the effects of PL on DNA damage and repair against CRPC have remained unclear. The aim of this study was to further explore the anticancer activity and mechanisms of action of PL against CRPC in terms of DNA damage and repair processes. Methods The effect of PL on CRPC was evaluated by MTT assay, long-term cell proliferation, reactive oxygen species assay, western blot assay, flow cytometry assay (annexin V/PI staining), β-gal staining assay and DAPI staining assay. The capacity of PL to inhibit the invasion and migration of CRPC cells was assessed by scratch-wound assay, cell adhesion assay, transwell assay and immunofluorescence (IF) assay. The effect of PL on DNA damage and repair was determined via IF assay and comet assay. Results The results showed that PL exhibited stronger anticancer activity against CRPC compared to that of taxol, cisplatin (DDP), doxorubicin (Dox), or 5-Fluorouracil (5-FU), with fewer side effects in normal cells. Importantly, PL treatment significantly decreased cell adhesion to the extracellular matrix and inhibited the migration of CRPC cells through affecting the expression and distribution of focal adhesion kinase (FAK), leading to concentration-dependent inhibition of CRPC cell proliferation and concomitantly increased cell death. Moreover, PL treatment triggered persistent DNA damage and provoked strong DNA damage responses in CRPC cells. Conclusion Collectively, our findings demonstrate that PL potently inhibited proliferation, migration, and invasion of CRPC cells and that these potent anticancer effects were potentially achieved via triggering persistent DNA damage in CRPC cells.


Endocrinology ◽  
2015 ◽  
Vol 156 (1) ◽  
pp. 58-70 ◽  
Author(s):  
Ryuta Tanimoto ◽  
Alaide Morcavallo ◽  
Mario Terracciano ◽  
Shi-Qiong Xu ◽  
Manuela Stefanello ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1083
Author(s):  
Kum Hee Noh ◽  
Ae Jin Jeong ◽  
Haeri Lee ◽  
Song-Hee Lee ◽  
Eunhee Yi ◽  
...  

Although prostate cancer is clinically manageable during the early stages of progression, metastatic progression severely compromises the prognosis and leads to mortality. Constitutive activation of STAT3 has been connected to prostate cancer malignancy, and abolishing the STAT3 activity may diminish tumor growth and metastasis. However, its suppressor genes and pathways have not been well established. In this study, we show that promyelocytic leukemia zinc finger (PLZF) has a putative tumor-suppressor function in prostate cancer by inhibiting phosphorylation of STAT3. Compared with a benign prostate, high-grade prostate cancer patient tissue was negatively correlated with PLZF expression. PLZF depletion accelerated proliferation and survival, migration, and invasion in human prostate cancer cells. Mechanistically, we demonstrated a novel role of PLZF as the transcriptional regulator of the tyrosine phosphatase SHP-1 that inhibits the oncogenic JAKs–STAT3 pathway. These results suggest that the collapse of PLZF expression by the CCL3 derived from fibroblasts accelerates the cell migration and invasion properties of prostate cancer cells. Our results suggest that increasing PLZF could be an attractive strategy for suppressing prostate cancer metastasis as well as for tumor growth.


MRS Advances ◽  
2019 ◽  
Vol 4 (21) ◽  
pp. 1207-1213 ◽  
Author(s):  
MD Shahjahan Molla ◽  
Dinesh R. Katti ◽  
Kalpana S. Katti

ABSTRACTProstate cancer has a strong preference for metastasizing to bone which is the primary cause of prostate cancer-related morbidity and mortality. The complex nature of cancer metastasis requires the development of translational models that recapitulate a specific metastatic stage. Herein, we report the mimicking of mesenchymal to epithelial transition (MET) of prostate cancer cells using highly metastatic and a non-metastatic prostate cancer cell lines. A unique cell culture technique that we termed as ‘sequential culture’ was used to create a biomimetic bone microenvironment for metastasized prostate cancer cells by introducing bioactive factors from osteogenic induction of human mesenchymal stem cells (MSCs) within the porous 3D scaffolds. The in vitro 3D tumor model can be used as a testbed to study the interaction between prostate cancer and bone microenvironment and for the design of novel therapeutic studies.


Sign in / Sign up

Export Citation Format

Share Document