Early Evidence of Cochlear Damage in a Large Sample of Percussionists

2005 ◽  
Vol 20 (3) ◽  
pp. 135-139
Author(s):  
Jodee A Pride ◽  
David R Cunningham

Percussionists can be exposed to intermittent sound stimuli that exceed 145 dB SPL, although damage may occur to the outer hair cells at levels of 120 dB SPL. The present study measured distortion-product otoacoustic emissions (DPOAEs) in a group of 86 normal-hearing percussionists and 39 normal-hearing nonpercussionists. Results indicate that normal-hearing percussionists have lower DPOAE amplitudes than normal-hearing nonpercussionists. DPOAE amplitudes were significantly lower at 6000 Hz in both the left and right ears for percussionists. Percussionists also more frequently had absent DPOAEs, with the greatest differences occurring at 6000 Hz (absent DPOAEs in 25% of percussionists vs 10% of nonpercussionists). When all frequencies are considered as a group, 33% of the percussionists had an absent DPOAE in either ear at some frequency, compared to only 23% of the nonpercussionists. Otoacoustic emissions are more sensitive to outer hair cell damage than pure-tone threshold measurements and can serve as an important measurement of sensory loss (i.e., outer hair cell damage) in musicians before the person perceives the hearing loss. DPOAE monitoring for musicians, along with appropriate education and intervention, might help prevent or minimize music-induced hearing loss.

1997 ◽  
Vol 116 (6) ◽  
pp. 585-592 ◽  
Author(s):  
Kathleen C. Y. Sie ◽  
Susan J. Norton

Ototoxicity associated with cis-platinum administration commonly presents as hearing loss and tinnitus. The hearing loss is usually an irreversible, high-frequency sensorineural loss. Histologic studies in humans and animals suggest that the outer hair cells (OHCs) are most susceptible to cis-platinum. Evoked otoacoustic emissions (EOAE), as a measure of outer hair cell function, are potentially useful in following ototoxic insults involving OHCs. Distortion-product otoacoustic emissions (DPOAE) test frequency-specific regions of the cochlea and therefore may be particularly well suited for monitoring ototoxic injuries. We measured distortion product otoacoustic emissions, at f2 = 2, 4, 6, 8, 10, and 12 kHz, in gerbils after a single large dose of cis-platinum. Animals treated with saline served as controls. The findings were compared to auditory brain stem evoked response (ABR) thresholds, using tone pips of the same frequencies. The DPOAE and ABR thresholds were measured before treatment and again 2, 5, and 14 days after drug administration. The changes in DPOAE were compared with the changes in ABR. No treatment effect was noted in the 2-day group. Animals treated with c/s-platinum demonstrated significant elevation of DPOAE and ABR thresholds compared with control animals at 5 and 14 days. There was no significant difference between the threshold changes in the 5-and 14-day groups.


2015 ◽  
Vol 112 (47) ◽  
pp. 14723-14727 ◽  
Author(s):  
Chang Liu ◽  
Elisabeth Glowatzki ◽  
Paul Albert Fuchs

In the mammalian cochlea, acoustic information is carried to the brain by the predominant (95%) large-diameter, myelinated type I afferents, each of which is postsynaptic to a single inner hair cell. The remaining thin, unmyelinated type II afferents extend hundreds of microns along the cochlear duct to contact many outer hair cells. Despite this extensive arbor, type II afferents are weakly activated by outer hair cell transmitter release and are insensitive to sound. Intriguingly, type II afferents remain intact in damaged regions of the cochlea. Here, we show that type II afferents are activated when outer hair cells are damaged. This response depends on both ionotropic (P2X) and metabotropic (P2Y) purinergic receptors, binding ATP released from nearby supporting cells in response to hair cell damage. Selective activation of P2Y receptors increased type II afferent excitability by the closure of KCNQ-type potassium channels, a potential mechanism for the painful hypersensitivity (that we term “noxacusis” to distinguish from hyperacusis without pain) that can accompany hearing loss. Exposure to the KCNQ channel activator retigabine suppressed the type II fiber’s response to hair cell damage. Type II afferents may be the cochlea’s nociceptors, prompting avoidance of further damage to the irreparable inner ear.


1991 ◽  
Vol 14 ◽  
pp. S12
Author(s):  
Tomoo Homma ◽  
Yutaka Hosokawa ◽  
Toshio Moriyama ◽  
Keiichi Murata

2013 ◽  
Vol 22 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Fatima T. Husain

Purpose The aim of this study was to measure the effect of tinnitus, while accounting for the effect of hearing loss and aging, on distortion product otoacoustic emissions (DPOAEs). Method DPOAEs were measured twice in both ears in 5 groups of participants: young adults with normal hearing, middle-age adults with normal hearing, adults with high-frequency sensorineural hearing loss, age-matched adults with similar hearing loss and tinnitus, and adults with normal hearing and chronic tinnitus. Results Multivariate analysis revealed a main effect of hearing loss and age, but no effect of tinnitus, across all 5 groups. Separate tests revealed significant effects of age and tinnitus in the normal-hearing groups and hearing loss in adults with or without tinnitus, but no effect of tinnitus in those with hearing loss. Conclusion DPOAE levels in the group of adults with hearing loss and tinnitus were diminished, but those in the group with normal hearing and tinnitus were enhanced, relative to DPOAE levels in the controls. Outer hair cell function, as indexed by DPOAEs, exhibits a complex association with tinnitus, and this has implications in the use of DPOAEs as a tool both for testing for tinnitus presence and for creating a model of neural mechanisms underlying tinnitus.


2015 ◽  
Vol 166 (5) ◽  
pp. 440-450 ◽  
Author(s):  
Maki Niihori ◽  
Terry Platto ◽  
Suzu Igarashi ◽  
Audriana Hurbon ◽  
Allison M. Dunn ◽  
...  

2005 ◽  
Vol 132 (4) ◽  
pp. 550-553 ◽  
Author(s):  
Haralampos Gouveris ◽  
Jan Maurer ◽  
Wolf Mann

OBJECTIVE: To investigate cochlear outer hair cell function in patients with acute tonal tinnitus and normal or near-normal hearing threshold. STUDY DESIGN AND SETTING: Prospective controlled study in an academic tertiary health center. Distortion products of otoacoustic emissions (DPOAE)-grams of 32 ears with acute tonal tinnitus and normal hearing or minimal hearing loss were compared with those of 17 healthy nontinnitus ears. RESULTS: Tinnitus ears exhibited relatively increased amplitudes of DPOAE at high frequencies (4-6.3 kHz) when compared with the group of healthy ears and relatively decreased DPOAE amplitudes at middle frequencies (1650-2400 Hz). Statistically significant ( P < 0.01) increased mean values of DPOAE amplitudes were observed only at a frequency of f2 equal to 4.9 kHz. CONCLUSIONS AND SIGNIFICANCE: These findings suggest an altered functional state of the outer hair cells at a selected high-frequency region of the cochlea in ears with acute tonal tinnitus and normal or near-normal hearing threshold.


2021 ◽  
Author(s):  
Xuemin Chen ◽  
Yu-hui LIU ◽  
Shuai-fei JI ◽  
Xin-miao XUE ◽  
Peng LIU ◽  
...  

Abstract Background Soldiers are often exposed to high-intensity noise produced by military weapons and equipment during activities, and the incidence of noise-induced hearing loss (NIHL) in many arms is high. Oxidative stress has a significant role in the pathogenesis of NIHL, and research has confirmed that ginsenoside Rd (GSRd) suppresses oxidative stress. Therefore, we hypothesized that GSRd may attenuate NIHL and cochlear hair cell loss, induced by military aviation noise stimulation, through the Sirtuin1/proliferator-activated receptor-gamma coactivator 1α (SIRT1/PGC-1α) signaling pathway.Methods Forty-eight male guinea pigs were randomly divided into four groups: control, noise stimulation, GSRd, and glycerol. The experimental groups received military helicopter noise stimulation at 115 dB (A) for 4 h daily for five consecutive days. Hair cell damage was evaluated by using inner ear basilar membrane preparation and scanning electron microscopy. Terminal dUTP nick end labeling and immunofluorescence staining were conducted. Changes in the SIRT1/PGC-1α signaling pathway and other apoptosis-related markers in the cochleae, as well as oxidative stress parameters were used as readouts.Results Loss of outer hair cells, more disordered cilia, prominent apoptosis, and elevated free radical levels were observed in the experimental groups. GSRd treatment markedly improved morphological changes and apoptosis through decreasing Bcl-2 associated X protein (Bax) expression and increasing Bcl-2 expression. In addition, GSRd upregulated superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels, decreased malondialdehyde (MDA) levels, and enhanced the activity of SIRT1 and PGC-1α messenger ribonucleic acid and protein expression.Conclusion GSRd can improve structural and functional damage to the cochleae caused by noise. The underlying mechanisms may be associated with the SIRT1/PGC-1α signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document