Inorganic silicification of ancient carbonate rocks

2021 ◽  
Vol 91 (2) ◽  
pp. 186-196
Author(s):  
Amlan Banerjee ◽  
Sarbani Patranabis-Deb ◽  
Dilip Saha ◽  
M. Santosh

ABSTRACT Mechanisms of inorganic silicification of early Precambrian (older than 750 Ma) carbonate rocks remain equivocal. A quantitative model is presented here that captures the essence of ancient inorganic silicification of the carbonate rocks and is based on the hypotheses that carbonate silicification, a volume-conservative replacive process, is driven by crystallization stress induced by the growth of the guest mineral. Results of the quantitative model for silicification of calcitic limestone and dolostone are compared and validated against available independent observations and are found to be geologically reasonable. The quantitative model suggests that silicification of carbonate rocks is dependent on the host-rock composition and that calcitic limestones will be readily silicified compared to dolostone and/or aragonitic limestone. Results also show that silicification rate of carbonate rocks—irrespective of their composition—increases with increase in silica supersaturation and reactive surface area. Porosity and permeability of the host rock also increases the silicification rate of the carbonate rocks. Results also predict that substantial volume of silica-saturated fluids is required for inorganic silicification of a one-meter cube of carbonate rock. The quantitative model presented here has its limitations and should not be viewed as a unique and truly realistic representation of the carbonate silicification mechanism. The quantitative model presented here is unable to explain the formation of porosity and subsequent volume reduction of the parent material during the replacement process as observed in replacement experiments. Also, the effect of pH on silicification of carbonate rocks cannot be quantitatively estimated in this study. The quantitative model presented here should be viewed as one of the possible mechanisms of carbonate silicification that has to be tested further with experimental data and by model refinement.

2020 ◽  
Vol 8 ◽  
Author(s):  
Leny Montheil ◽  
Virginia G. Toy ◽  
James M. Scott ◽  
Thomas M. Mitchell ◽  
David P. Dobson

In natural friction melts, or pseudotachylites, clast textures and glass compositions can influence the frictional behavior of faults hosting pseudotachylites, and are, in turn, sensitive to the processes involved in pseudotachylite formation. Quantification of these parameters in situations where the host rock composition and formation conditions are well-constrained, such as analogue experiments, may yield calibrations that can be employed in analysis of natural pseudotachylites. In this paper, we experimentally-generated pseudotachylites in granitoid rocks (tonalite and Westerly granite) at Pconf = 40 MPa and slip rates of ∼0.1 m s−1, comparable to the conditions under which natural pseudotachylite is known to form in Earth’s upper crust. We find variations in both clast textures and glass compositions that reflect formation processes, and probably influence the frictional behavior of similar natural faults hosting pseudotachylite. Quantification of particle size and shape distribution with a semi-automatic image analysis method, combined with analysis of glass and host-rock composition of these experimentally generated pseudotachylites, reveals that the textures of pseudotachylite material evolved by combinations of 1) comminution, 2) heterogeneous frictional flash melting, and 3) homogeneous (diffusive) clast melting and/or marginal decrepitation. Fractal dimensions of pseudotachylite-hosted clasts (D ∼ 3) that are greater than those of marginal fragmented host rock particles (gouge, D ∼ 2.4), reflect an increase of the intensity of comminution by slip localisation during a pre-melting phase. Chemical analyses demonstrate that these pseudotachylite glasses were generated by frictional flash melting, where host rock phases melt individually. Biotite is the least resistant to melting, feldspar intermediate, and quartz is the most resistant. The peudotachylite glass generated in these experiments has an alkaline composition, is depleted in SiO2 compared to the bulk host-rock, and shows heterogeneous compositions in a single sample related to proximity to host-rock minerals. The percentage contributions of host rock phases to the melt, calculated by a mixing model, shows that glass compositions are dominated by plagioclase and biotite. Within the melt, margins of clasts were dissolved uniformly by diffusion and/or affected by marginal decrepitation, resulting in convex and round shapes with convexities averaging ∼0.8 and circularities averaging ∼0.65.


2021 ◽  
Author(s):  
Kangxu Ren ◽  
Junfeng Zhao ◽  
Jian Zhao ◽  
Xilong Sun

Abstract At least three very different oil-water contacts (OWC) encountered in the deepwater, huge anticline, pre-salt carbonate reservoirs of X oilfield, Santos Basin, Brazil. The boundaries identification between different OWC units was very important to help calculating the reserves in place, which was the core factor for the development campaign. Based on analysis of wells pressure interference testing data, and interpretation of tight intervals in boreholes, predicating the pre-salt distribution of igneous rocks, intrusion baked aureoles, the silicification and the high GR carbonate rocks, the viewpoint of boundaries developed between different OWC sub-units in the lower parts of this complex carbonate reservoirs had been better understood. Core samples, logging curves, including conventional logging and other special types such as NMR, UBI and ECS, as well as the multi-parameters inversion seismic data, were adopted to confirm the tight intervals in boreholes and to predicate the possible divided boundaries between wells. In the X oilfield, hundreds of meters pre-salt carbonate reservoir had been confirmed to be laterally connected, i.e., the connected intervals including almost the whole Barra Velha Formation and/or the main parts of the Itapema Formation. However, in the middle and/or the lower sections of pre-salt target layers, the situation changed because there developed many complicated tight bodies, which were formed by intrusive diabase dykes and/or sills and the tight carbonate rocks. Many pre-salt inner-layers diabases in X oilfield had very low porosity and permeability. The tight carbonate rocks mostly developed either during early sedimentary process or by latter intrusion metamorphism and/or silicification. Tight bodies were firstly identified in drilled wells with the help of core samples and logging curves. Then, the continuous boundary were discerned on inversion seismic sections marked by wells. This paper showed the idea of coupling the different OWC units in a deepwater pre-salt carbonate play with complicated tight bodies. With the marking of wells, spatial distributions of tight layers were successfully discerned and predicated on inversion seismic sections.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Samuel W. Scott ◽  
Thomas Driesner

It has long been recognized that quartz precipitation from circulating hydrothermal fluids may reduce porosity and permeability near intrusions. However, the magnitude of permeability changes and potential feedbacks between flow, heat transfer, and quartz precipitation/dissolution remain largely unquantified. Here, we present numerical simulations of fluid convection around upper crustal intrusions which explicitly incorporate the feedback between quartz solubility and rock permeability. As groundwater is heated to ~350°C, silica dissolves from the host rock, increasing porosity and permeability. Further heating to supercritical conditions leads to intensive quartz precipitation and consequent permeability reduction. The initial host rock permeability and porosity are found to be main controls on the magnitude and timescales of permeability changes. While the permeability changes induced by quartz precipitation are moderate in host rocks with a primary porosity ≥ 0.05, quartz precipitation may reduce rock permeability by more than an order of magnitude in host rocks with a primary porosity of 0.025. Zones of quartz precipitation transiently change locations as the intrusion cools, thereby limiting the clogging effect, except for host rocks with low initial porosity. This permeability reduction occurs in timescales of hundreds of years in host rocks with initial high permeability and thousands of years in host rocks with intermediate permeability.


2020 ◽  
Author(s):  
Juliette Lamarche ◽  
Nicolas Espurt ◽  
Tassadit Kaci ◽  
Marié Lionel ◽  
Richard P. Pascal

<p>Fractures in rocks are sensitive cursers that may enhance porosity and permeability. This is particularly true in carbonates because background fractures might be ubiquitous after embrittlement at early burial (Lavenu & Lamarche, 2018). Barren fractures at depth are susceptible to chemical reactions with underground fluids and cementation that might totally or partially reduce porosity and permeability (Laubach et al., 2019; Aubert et al., 2019). Hence, early background fractures with long lasting tectonic history and structural diagenesis, in addition to fractures neo-formed at any time during burial, tectonic inversion and folding join the game of matrix/fracture permeability and porosity modification. To predict the fractures contribution to flow in Naturally Fractured Reservoirs, it is fundamental to know the fracture sequence and geometry resulting from the geological history in folded carbonates, from the host-rock embrittlement to the present-day situation. At any step, we intent quantifying the fracture geometry and estimating their contribution to the host reservoir properties.</p><p> </p><p>The study is performed in Upper Jurassic to Lower Cretaceous carbonates (Oxfordian, Tithonian, Berriasian) formed in the South-Provençal Basin. From deposition to present-day, the platform carbonates underwent alternating subsidence, uplift, erosion and folding. We sampled a scan-line along a horizontal path across both flanks of the Mirabeau Anticline (SE France). We measured all tectonic and stratigraphic features crossed by the line, checked their nature and position. We deciphered their chronological relationships with respect to each other and to the bed tilting. We compiled all cross-cutting relationships into a coherent sequence of deformation of pre-, syn- and post-fold structures and correlated it to burial, uplift and folding of the host rock. At each brittle stage, the fracture pattern was characterized in terms of architecture, mechanical stratigraphy and reservoir properties in order to draw a time-path in a matrix versus fracture permeability and porosity table (Nelson Reservoir types) during 150My. After embrittlement, the host-rocks bear fractures, pressure-solution, faulting, folding and erosion. If it was a reservoir, its Nelson type would have evolved from IV to III during the burial and initial brittle deformation. The tectonic inversion and onset of multiple-scale brittle structures would have increased and decreased the fracture and matrix contribution respectively and the reservoir evolved to types II and I. During the 150My history, fracture porosity and permeability depends on their geometry (veins versus tension gashes) and cementation. This results in several switches from type II to I as a function of the fracture timing, geometry, connectivity and diagenesis.</p><p> </p><p>Aubert I. et al. (2019). Imbricated structure and hydraulic path induced by strike-slip reactivation of a normal fault in carbonates. Fifth International Conference on Fault and Top Seals, 8-12 September 2019, Palermo, Italy.</p><p>Bestani L.et al. (2016) Reconstruction of the Provence Chain evolution, southeastern France., Tectonics Vol: 35, p.1506–1525</p><p>Laubach, S. E. et al. (2019) The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Reviews Geophysics, 57.</p><p>Lavenu A.P.C., Lamarche J. (2018) What controls diffuse fractures in platform carbonates? Insights from Provence (France) and Apulia (Italy), JSG 108, p. 94-107</p>


2020 ◽  
Author(s):  
Saleh Ahmed ◽  
Luis González ◽  
Johannes Jozef Gerardus Reijmer ◽  
Ammar ElHusseiny

<p>In terms of reservoir properties distribution carbonate rocks are very heterogeneous. Moreover, the types of porosity in carbonate rocks is very diverse. In our study of the Upper Marrat Formation near Khasm-adh-Dhibi (central Saudi Arabia) we have documented the pore system complexity and are deconvolving the impact of various post-depositional processes on porosity and permeability evolution of the formation. The Upper Marrat Formation is exposed in the central part of the Arabian plate in a north-south elongated mountain belt. It forms the lower part of the thick Jurassic petroleum-rich succession. The sediments forming the Upper Marrat Formation were deposited during the Early Jurassic time, the Toarcian. The Upper Marrat Formation shows fossiliferous biomicrite to sparse biomicrite carbonates with an evaporite deposit at the top. It is bounded by clayey units at both the top and the base. In general, because of the muddy matrix of the Upper Marrat, sediments are very tight and show low permeability. During the last 175 My, the Upper Marrat has been subjected to a series of diagenetic and tectonic processes. The initial micro- and intergranular porosity was reduced due to early compaction and cementation, however, during later diagenesis and tectonism, porosity and permeability were enhanced. The dominant diagenetic porosity in the Upper Marrat sediments is vuggy porosity, followed by fabric selective intragranular porosity. Many of the horizons in the Upper Marrat are heavily burrowed and mostly filled with sand-sized grains showing a higher porosity than the matrix. Dolomite is limited to evaporite strata and contain extensive inter-crystalline porosity produced during dolomite formation. Tectonism has enhanced porosity through the development of micro- and macro-fractures.  The different sized and orientated micro-fractures are important while they enhance permeability by connecting different pore types. Then extensive macro-fracture network has a major impact on the reservoir qualities, both porosity and permeability. The heavily fractured formation shows numerous fractures sets with NNE to SSW and ENE to WNW orientations. Fractures are mostly vertical to near-vertical; they are nearly all open, and often crosscut beds, or end at bedding planes. These fractures are the most abundant porosity type and their connectivity results in a very high permeability. In conclusion, initial porosity and permeability, and subsequent diagenetic and tectonic processes reduced and enhanced the porosity and permeability development of the sediments of the Early Jurassic Upper Marrat Formation.</p>


Sign in / Sign up

Export Citation Format

Share Document