scholarly journals Climate Change – Probable Socio-Economic Systems (SES) Implications And Impacts In The Anthropocene Epoch

2015 ◽  
Vol 21 (2) ◽  
pp. 308-317
Author(s):  
Eric Gilder ◽  
Dilip K. Pal

Abstract It is vital for security experts to learn from the historical records of global climate change as to how the human society has been impacted by its consequences in the “new” Anthropocene Epoch. Some of these consequences of global climate change include the perishing of several human settlements in different parts of the globe at different times, e.g., in 1700 B.C., prolonged drought contributed to the demise of Harappan civilization in northwest India. In 1200 B.C., under a similar climatic extremity, the Mycenaean civilization in present-day Greece (as well as the Mill Creek culture of the northwestern part of the present-day US state of Iowa) perished. Why did some societies under such climatic events perish while others survived? Lack of preparedness of one society and its failure to anticipate and adapt to the extreme climatic events might have attributed to their extinction. The authors will also analyze the extinction of one European Norse society in Greenland during the Little Ice Age (about 600 years ago), as compared to the still-surviving Inuit society in the northern segment of Greenland, which faced even harsher climatic conditions during the Little Ice Age than the extinct Norsemen. This is how the adaptability and “expectation of the worst” matter for the survival of a particular community against climatic “black swan” events (Taleb, 2007). Similar impacts in terms of sea-level rise expected by the year 2100 whereby major human populations of many parts of the world are expected to lose their environmental evolutionary “niche” will be discussed. Rising temperature will not only complicate human health issues, but also will it take its toll on the staple food producing agricultural belts in some latitudinal expanse. It will also worsen the living condition of the populace living in areas where climate is marginal. Through the Socio-Economic Systems Model provided by Vadineanu (2001), the authors will next consider the effect of extant policy-making “prisms” responding to climate change (such as the “Club of Rome” versus the “Club for Growth” visions) as concerns the ongoing process of globalization and survival of the nation-state.

Stanovnistvo ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Predrag Petrovic ◽  
Goran Nikolic ◽  
Ivana Ostojic

Over the past several decades there has been a strong intensifying trend of human society impact on ecosystems, consumption of natural resources and global change. The environmental impact of the society is fully apparent and dominantly implemented through various greenhouse gases emissions (GHG), leading towards global climate change with considerably spread harmful effects. Global climate change includes the earth and ocean surface and atmospheric warming, but also melting of snow and ice, increase of sea levels and ocean acidity, as well as ever more common natural phenomena extremes (winds, various forms of rainfall/precipitation, extremely low or high temperatures, etc.). Scientists are well-familiarized with the fact that use of fossil fuels, such as oil derivatives and coal, is the main generator of harmful gases. In addition, possible substitutions for fossil fuels in the form of other energy sources are very limited, and it should be remembered that other energy sources also have certain adverse environmental effects. Bearing in mind climate change caused by products of fossil fuels combustion, as well as inevitable depletion of natural crude oil resources, management of growing global energy demand becomes one of the key goals and challenges of 21st century. If these reasons are coupled with obligations emanating from Kyoto Protocol, it is clear that attention of researches should be more than reasonably focused on the main determinants of energy consumption. This study is focused on illumination of key demographic and economic determinants of energy consumption in 28 EU member states in the period 1960- 2014. The results obtained demonstrate that population positively and quite strongly influence total energy consumption. An increase of population of 1% will result in an increase of energy consumption of 1.59% to 1.76%. Such relation most probably can be explained by the fact that demographic growth of the society aggravates and complicates planning processes of efficient energy consumption, diminishing the ability of society to be energy efficient. The population effect of persons aged 65 and above to energy consumption is also positive. An increase in share of this age group of 1% will result in an increase in energy consumption of approximately 0.43%. Positive elasticity coefficient should be understood as a proof that European societies with higher share of senior citizens consume more energy that societies with higher share of younger population, not necessarily as an argument that senior citizens use more energy than younger population. The explanation for such nature of a cause-andeffect relation could be that high share of senior citizens influences the structure of production and consumption, spatial distribution of population, transport infrastructure and social services provided. A significant influence on energy consumption in the EU is made by the level of economic development of countries, which is in accordance with the Environmental Kuznets Curve (EKC), suggesting a relation of inverted letter ?U?. The amount of income per capita needed to have the EKC expressed ranges between 54,183 and 81,552 dollars.


2013 ◽  
Vol 01 (01) ◽  
pp. 1350006 ◽  
Author(s):  
Ying CHEN ◽  
Zhe LIU

Human society is facing great challenges to address global climate change. How to move the international climate process forward is still a serious problem for politicians. Geoengineering's, so called Plan B to cope with climate change has attracted attentions of the international community with a lot of debate on its impact, risks from an ethical view as well as global governance at the level. In this paper, we focus on some important issues of geoengineering including the definition, characteristics, ethics and global governance, etc. and then put forward some suggestions for China's considerations.


2011 ◽  
Vol 75 (3) ◽  
pp. 461-470 ◽  
Author(s):  
Chad S. Lane ◽  
Sally P. Horn ◽  
Kenneth H. Orvis ◽  
John M. Thomason

AbstractClimate change during the so-called Little Ice Age (LIA) of the 15th to 19th centuries was once thought to be limited to the high northern latitudes, but increasing evidence reflects significant climate change in the tropics. One of the hypothesized features of LIA climate in the low latitudes is a more southerly mean annual position of the Intertropical Convergence Zone (ITCZ), which produced more arid conditions through much of the northern tropics. High-resolution stable oxygen isotope data and other sedimentary evidence from Laguna de Felipe, located on the Caribbean slope of the Cordillera Central of the Dominican Republic, support the hypothesis that the mean annual position of the ITCZ was displaced significantly southward during much of the LIA. Placed within the context of regional paleoclimate and paleoceanographic records, and reconstructions of global LIA climate, this shift in mean annual ITCZ position appears to have been induced by lower solar insolation and internal dynamical responses of the global climate system. Our results from Hispaniola further emphasize the global nature of LIA climate change and the sensitivity of circum-Caribbean climate conditions to what are hypothesized to be relatively small variations in global energy budgets.


Author(s):  
Sara E Cook

From the years 1300 until the 1850’s people living in Western Europe battled a terrifying and seemingly insurmountable foe, the Little Ice Age. Examining how people of this time not only survived but thrived during an era of cataclysmic climate change can offer us positive perspectives and productive mechanisms going forward in our own battle with climate in modern times. Explored are massive famines and epidemic disease, volcanic eruptions and their after-effects, specific historical events such as the Black Plague and the Irish Potato famine and how all of these devastating events overlap to create a vivid picture of human fortitude. This article uncovers the tools and ingenuity Western Europeans employed to overcome a rapidly changing climate and how those tools are properly utilized to battle devastating climatic events. In exploring both scientific theory, including   anthropological works such as Anthony Wallace’s Revitalization Movement, and the modern church’s position on climate change, this article hopes to address the current circumstance of global climate change and provide a potential way forward for modern humans in light of scientific reason and theological discussion about our unavoidable role in the environment.


Author(s):  
Thomas S. Bianchi

The Pleistocene Epoch, often referred to as the Ice Age, lasted from approximately 2.6 million to 11,700 years ago. The last major ice advance began about 110,000 years ago, and the most recent episode of maximum ice coverage, the Last Glacial Maximum, began about 26,500 years ago and ended approximately 19,000 years ago. Thereafter, glacier retreat began, largely ending by about 11,700 years ago. That marked the beginning of the Holocene interglacial geologic epoch, which continues to the present. During the last glacial period, sea level was much lower because so much water was locked up in ice sheets, largely at the poles. This lowering of the sea level exposed the margins of the continents (the continental shelves) around the world. When the Ice Age ended, sea level started to rise during the deglacial period, a process that continued into the Holocene. Deltaic regions received meltwaters from the thawing glaciers, along with glacier- derived sediments. Of particular note in the late Holocene is a climate episode called the Medieval Warm Period, originally identified by the English botanist Hubert Lamb. The Medieval Warm Period was a time of warm climate in the North Atlantic region and may have also impacted other areas around the world. It lasted from about the years 950 to 1250. Later in this chapter, I will discuss this climate anomaly, along with something called the “Hockey Stick” debate, which relates to exceptional warming during recent centuries of the Holocene (i.e., global warming). In any case, all modern and paleodeltas formed during periods of peak sea level in the Holocene. These new deltas had fertile soils that were constantly irrigated by the flow of fresh water, which promoted early settlement by humans. So, the Holocene started near the end of the retreat of the Pleistocene glaciers, and human civilizations arose entirely in the Holocene Epoch. To view the Holocene, simply look around you today. In this chapter, I will explore the natural and human-induced causes of global climate change and how they impact deltaic regions.


Author(s):  
Diwaker Pandey

Climate-Change affecting unfavorably because of upward push in worldwide temperature alteration and that too alarmingly. Ancient Air bubbles buried in Antarctic Ice to shed more light on Global Warming. It has happened in the North-Atlantic and may happen again. According to scientists, a dangerous atmospheric deviation could prompt prolonged chill and move the Earth towards a brand new age and a new defined climate that would be an effect of the worldwide environmental change. On such conditions James White, a geography educator at Colorado University, Boulder, not engaged with the investigation, said that albeit the ice-age proof showed that degrees of CO2 and further ozone harming substances rose and fell in reaction to heating and cooling , the gases could clearly take the lead as well. Global Climate withinside the fresh past: In the 90’s decades there has stood an experience and witnessing of the extremes of various weather events. In the warmer temperature of century was recorded and a share of the majority noticeably terrible floods all in the course of the planet. The one such inconstancy is the staggering dry period in the Sahel-area which lies in South-of-Sahara desert, from 1967-1977. During the 1930’s there were severe drought that occurred in the south-western Great Plains of the U.S which was described as DUST BOWL. The after-effects of the Global-Climate-Change are severe and tell us about the various impacts. They are:- A. Crop yield or Crop failures, B. Floods, C. Migration of people. These are various influences of the Global-Climate-Change that effect the biosphere from many ways as Climate-Change directly affects the biosphere which is the only sphere wherein lifestyle exists and where life can exist.


Sign in / Sign up

Export Citation Format

Share Document