scholarly journals Effect of Air-Abrasion on Shear Bond Strength of Resin Composite to Dentin: A Study in Vitro

2021 ◽  
Vol 11 (4) ◽  
pp. 451-455
Author(s):  
Timur Melkumyan ◽  
Shahnoza Musashaykhova ◽  
Fatima Daurova ◽  
Nuriddin Kamilov ◽  
Surayo Sheraliyeva ◽  
...  

The purpose of this study was to evaluate in vitro the efficacy of alumina, sodium bicarbonate and erythritol-based tooth air-abrasion on shear bond strength (SBS) of resin composite to dentin. Methods and Results: In order to assess the strength of the adhesive bond of the resin composite to tooth dentin, 50 tooth samples were prepared in accordance with the Ultradent Shear Bond Test method. All samples were divided into 5 groups. In Group 1 (n=10) and Group 2 (n=10), for air-abrasion of dentin surface 2 powders based on aluminum oxide with a particle size of 50μm and 27μm, respectively, were used (RONDOflex plus 360, KaVo, Biberach, Germany). In Group 3 (n=10) and Group 4 (n=10), other abrasive powders based on sodium bicarbonate (40μm) and erythritol (14μm), respectively, were used for a similar purpose (Air-Flow Classic comfort, Air-Flow Plus, EMS, Nyon, Switzerland). The control group (n=10) consisted of the remaining tooth samples in which the dentin surface, after preparation with a carbide bur, was not subjected to an air-abrasion.The one-day adhesive strength of bonded interfaces was evaluated on an UltraTester device (Ultradent Products Inc., USA) after resin bonding without aging simulation. The speed of movement of the test clamp with the installed sample was set to 1 mm/min. The maximal value of bonding failure was fixed in pounds (lb). The dentin surface ultrastructure was studied on 10 additional tooth samples, which were prepared for SEM analysis. It was found that the treatment of dentin surface with air-abrasive powders based on alumina (50 μm and 27 μm) and sodium bicarbonate (40 μm) did not improve the strength of the adhesive bond of resin composite to dentin. The strength of adhesion of the resin composite to dentin decreased significantly after air-abrasion of the tooth surface with erythritol-based powder.

2019 ◽  
Vol 7 (13) ◽  
pp. 2162-2166 ◽  
Author(s):  
Rasha M. Abdelraouf ◽  
Manar Mohammed ◽  
Fatma Abdelgawad

AIM: This study aimed to assess the shear bond strength of a self-adhering flowable resin composite versus a total-etch one to different surfaces of permanent-molars. MATERIAL AND METHODS: Thirty-six sound human permanent molars were used. The teeth were embedded in acrylic blocks, such that their buccal surfaces were shown. The teeth were divided into three groups: Group I: Uncut-Enamel, Group II: Cut-enamel-surfaces with minimal-grinding and Group III: dentin-surfaces. Half of the teeth in each group were used for bonding to a self-adhering flowable resin-composite (Dyad-flow, Kerr, USA). While the other half of each group was bonded to a total-etch flowable resin-composite (Filtek™Z350-XT,3M-ESPE, USA) which necessitate etching and bonding. Teflon-mold was used for constructing resin composite cylinders (3 × 3 mm) over the buccal surfaces. The Dyad-flow was applied in the central hole of the mould placed upon tooth-surface, and then light-cured for 20 seconds. The Filtek-Z350-XT was applied similarly after etching and bonding steps. The teeth were stored in 37°C distilled water for 24 hours. The strength was measured using a universal testing machine and statistically analysed. Modes of failure were studied using digital-microscope. RESULTS: Mean values of shear bond strength for the Dyad and Filtek-Z350-XT in the uncut-enamel were 3.5 and 24.6MPa respectively, while that for cut-enamel were 4.5 and 12.7MPa respectively (Both highly statistically significant P ≤ 0.01) and in dentin were 4.3 and 6.7MPa respectively (Statistically significant P ≤ 0.05). The failure mode for Dyad was mainly adhesive (un-cut or cut-enamel 83.3% adhesive and 16.7% mixed, while in dentin 100% adhesive). While the modes of failure for Filtek-Z350-XT in enamel, either cut or un-cut, were 50% cohesive and 50% mixed, whereas in dentin 100% adhesive. CONCLUSION: Bonding of self-etch ″Dyad-flow″ flowable resin-composite was lower than the total-etch one in enamel and dentin. Thus further material improvement may be required.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmed Mohammed Hassan ◽  
Ahmed Ali Goda ◽  
Kusai Baroudi

Objective. The aim of this study was to evaluate the effect of different disinfectant agents on bond strength of two types of resin composite materials.Methods. A total of 80 sound posterior teeth were used. They were divided into four groups(n=20)according to the dentin surface pretreatment (no treatment, chlorhexidine gluconate 2%, sodium hypochlorite 4%, and EDTA 19%). Each group was divided into two subgroups according to the type of adhesive (prime and bond 2.1 and Adper easy one). Each subgroup was further divided into two subgroups according to the type of resin composite (TPH spectrum and Tetric EvoCeram). Shear bond strength between dentin and resin composite was measured using Universal Testing Machine. Data collected were statistically analyzed byt-test and one-way ANOVA followed by Tukey’spost hoctest.Results. It was found that dentin treated with EDTA recorded the highest shear bond strength values followed by sodium hypochlorite and then chlorhexidine groups while the control group showed the lowest shear bond strength.Conclusions. The surface treatment of dentin before bonding application has a great effect on shear bond strength between resin composite and dentin surface.


2020 ◽  
Vol 8 (10) ◽  
pp. 454-459
Author(s):  
Bhalla V. ◽  
◽  
K. Goud M. ◽  
Chockattu S. ◽  
Khera A ◽  
...  

Background:Dentin bonding is an ever-evolving field in adhesive dentistry. With the introduction of newer systems into the market, there is a crucial need to test their efficiency in terms of bond strength. Dual-cured adhesives in theory may provide for a better degree of conversion as compared to conventional light-cured adhesives .Thus, the aim of this study was to compare the shear bond strength of three different self-etch adhesives namely ClearfilSE bond (Kuraray), Tetric N Bond Universal (IvoclarVivadent) and Futura Bond DC (Voco) to dentin. Materials & Methods: Ninety extracted non-carious, intact human mandibular molar teeth were selected for this study. Each tooth was decoronated using a double-sided diamond disc with water coolant to a depth of 2mm from the cusp tip .The cut dentin surface was then abraded against 600-grit wet silicon carbide papers for 60 seconds to produce a uniform smear layer. The root portion of each tooth was mounted on a plastic ring using cold cure acrylic resin. Specimens were then divided into three adhesive groups of 30 teeth each, Group A: ClearfilSE Bond (Kuraray), Group B: Tetric N Bond Universal (IvoclarVivadent), Group C :Futura Bond DC (Voco). All bonding agents were used according to the manufacturers’ instructions, in combination with the resin composite Tetric N Ceram (IvoclarVivadent). The samples were thermocycled, followed by shear bond strength testing using a Universal testing machine (Hounsfield). Data were subjected to statistical analysis using one-way analysis of variance (ANOVA) (P<0.05) and Post hoc Tukey’s test for inter- and intra- group analysis respectively. Results: Clearfil SE Bond yielded the highest shear bond strength values (30.9 ±4.66 MPa) which were statistically significant, followed byTetric N Bond Universal group (29.8 ±4.34) and the lowest shear bond strength values were recorded for Futura Bond DC (18.2 ±3.13). Conclusion: Clearfil SE bond and Tetric N bond Universal can be considered as better options than Futura Bond DC.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Taksid Charasseangpaisarn ◽  
Pattarawadee Krassanairawiwong ◽  
Chanidapa Sangkanchanavanich ◽  
Atima Kurjirattikan ◽  
Kanyarak Kunyawatyuwapong ◽  
...  

Background and Purpose. Contamination of the lithium disilicate (LDS) during the try-in procedure is unavoidable and may weaken the bond strength of restoration. The purpose of this study was to investigate the efficacy of different surface cleansing agents on the shear bond strength (SBS) of contaminated LDS. Materials and Methods. Seventy LDS specimens were randomly divided into seven groups. The first group was noncontaminated surface (PC). The six other groups were contaminated with the saliva and silicone disclosing medium and treated with no surface cleansing agent (NC); phosphoric acid (PO); Ivoclean (IV); sodium hydroxide solution (NA); Restorative Cleansing Agent (RC); and hydrofluoric acid (HF). Then, LDS specimens were cementated with Panavia V5 to resin composite rod. Each specimen was subjected to an SBS test. The modes of failure was inspected under light microscope. The surface element of each group was examined by SEM-EDS. Results. The results were analyzed with one-way ANOVA and Tamhane’s T2. The mean SBS value of NC was significantly lower than others ( p < 0.05 ), and HF was significantly higher than others ( p < 0.05 ). However, PC, PO, IV, NA, and RC were not significantly different from each other ( p > 0.05 ). The mode of failure was mostly adhesive failure in every group. The surface showed similar amount of elements in every group. Conclusions. The SBS of LDS was reduced by saliva and silicone disclosing medium contamination which can be restored using acid- and alkaline-based surface cleansing agents before the cementation procedure.


2020 ◽  
Vol 44 (4) ◽  
pp. 234-239
Author(s):  
Latifa Alhowaish ◽  
Fouad Salama ◽  
Mohammed Al-Harbi ◽  
Mohamad Abumoatti

Aim: The purpose of this in vitro study was to assess the shear bond strength (SBS) and bond failure types of a resin-composite to six pulp-capping materials used in primary teeth. Study design: Eight-disc specimens from each pulp-capping material (6 groups) to bond to Filtek™ Z350 XT Flowable using a standard PVC tube (2×2mm). All groups were prepared according to the instruction of the manufacturer. The SBS was measured with a crosshead speed of 0.5 mm/min using a universal testing machine. Failure mode evaluation was completed using Digital Microscope by two independent examiners. Results: Urbical LC® showed the highest SBS (Mean±SD) followed by ProRoot® MTA and TheraCal LC® (35.422±2.910, 22.114±2.515, and 21.175±1.983) respectively. ANOVA showed significant differences between all groups (P=0.0001). Urbical LC® and Photac™ Fil QuickAplicap™ were statistically significant different from all other pulp-capping materials groups. ProRoot® MTA was statistically significant different than Biodentine® (P=0.0001) and Photac™ Fil (P=0.0001). The total number of bond failure was recorded for cohesive B failure/cohesive in the pulp-capping material (14) and adhesive failure (14). Conclusion: Most of the tested pulp-capping materials bonded to Filtek™ Z350 XT demonstrated clinically acceptable and high SBS. Urbical LC showed the highest SBS while Biodentine® showed the lowest SBS.


2014 ◽  
Vol 39 (1) ◽  
pp. 64-71 ◽  
Author(s):  
DMS Simões ◽  
RT Basting ◽  
FLB Amaral ◽  
CP Turssi ◽  
FMG França

SUMMARY The aim of this study was to evaluate the effect of a chlorhexidine and/or ethanol application on the bond strength of an etch-and-rinse, hydrophobic adhesive system either under in vitro aging or in situ cariogenic challenge. The dentin surface of 36 human third molars were flattened and allocated into four groups to be treated with chlorhexidine, ethanol, or chlorhexidine + ethanol or left unexposed to any solution (control) (n=9). Then, a resin composite restoration was made on the dentin surface and longitudinal sticks were obtained. Sticks from each tooth were assigned to three test conditions: stored in water in vitro for 24 hours, stored in water in vitro for 6 months, or worn in situ for 14 days. During in situ wear time, a high-cariogenic challenge condition was simulated. Specimens were tested for microtensile bond strength (μTBS). Multivariate analysis of variance and Tukey's test showed that chlorhexidine, ethanol, or chlorhexidine + ethanol did not affect the μTBS. The in vitro μTBS values were significantly lower for the specimens stored for 6 months than for those stored for 24 hours. Intermediate μTBS values were shown by the specimens worn in situ. Thus, use of chlorhexidine and/or ethanol was incapable of containing the degradation at the bond interface in the in vitro model. The in situ model was capable of reducing bond strength similarly to the in vitro/6 months model. Despite this, the in situ bond strength was still similar to that of the in vitro/24-hour model.


2020 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Vidya Madaparambil ◽  
Vincy Antony ◽  
Vineeth Menon ◽  
Mohamed Nayaz ◽  
GazanaferRoshan Mohamed Jasim

2019 ◽  
Vol 22 (5) ◽  
pp. 483
Author(s):  
Suresh Mitthra ◽  
Lukram Nivedita ◽  
Venkatachalam Prakash ◽  
NewbeginSelvakumar Gold Pearlin Mary ◽  
Alagarsamy Venkatesh ◽  
...  

BDJ Open ◽  
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Yasser R. Souror ◽  
Tayseer Maaly ◽  
Mohammed Sameer Khawandanah

Abstract To evaluate a fixed-space maintainer made of light-cure acrylic resin (LCAR) for its flexural and shear bond strength using different bonding systems to the enamel. 45 extracted primary teeth were selected. They were randomly divided into three equal groups (n = 15) along with the type of adhesive system (Tetric Flow, Transbond XT, and Fuji Ortho LC) used for bonding (LCAR) to the tooth surface. Surfaces were treated; LCAR was attached to the treated surfaces using a split Teflon mold. For flexural strength testing, ten bars of LCAR were made using another Teflon-split mold. Shear bond strength and mean flexural strength values were evaluated by a universal testing machine. The highest values of bond strength were recorded for Transbond XT, followed by Tetric Flow, while the lowest values were for Fuji Ortho LC. Various groups had a significant difference as investigated by ANOVA. ARI scores showed no significant difference in debond sites. Mean value and standard deviation of flexural strength for LCAR were 82.83  ± 5.2. LCAR has superior mechanical properties and could be an alternative to currently-in-use space maintainer though in vivo and in vitro trials are needed to progress the ultimate design of LCAR.


2021 ◽  
Author(s):  
Ladan Ranjbar Omrani ◽  
Saba Tohidkhah ◽  
Elham Ahmadi ◽  
Mahdi Abbasi ◽  
Reza Morvaridi Farimani

Abstract Background: The aim of the current study was to evaluate and compare the influence of Dycal, Lime-lite, Theracal LC, Biodentine, Resin-modified glass ionomer cement (RMGIC), and Activa Bioactive as the pulp capping material on the shear bond strength of resin composite to dentin.Methods: A total of 70 extracted caries-free molars were randomly assigned to seven groups. Six test groups were covered with various protective liners: Dycal (GD), Theracal LC (GT), lime-lite (GL), Activa Bioactive (GA), Biodentine (GB), RMGIC (GR). The control group (GC)received no liner pretreatment. Each sample was bonded to resin composite using the total-etch tetric N bond adhesive. The samples were then tested for shear bond strength using the universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The data were analyzed using the one-way ANOVA test followed by the Tamhane post-hoc test for pairwise comparisons of the groupsResults: Independent of the type of the applied liner, all groups exhibited inferior SBS to dentine compared to the control group. GT and GR showed significantly higher shear bond strength than GB and GD, which showed the lowest shear bond strength. GL and GA also had significantly lower SBS results than GT. The mode of fracture was predominantly cohesive in GD, GB, and GT and adhesive in GA.Conclusion: This present study concludes that the bond strength of resin-composite to dentine can be affected differently using various types of liners.


Sign in / Sign up

Export Citation Format

Share Document