scholarly journals REDUCTION OF STUDENT MISCONCEPTIONS: APPLICATION OF TTW-PBL LEARNING WITH CHEMICAL REPRESENTATION ON BUFFER SOLUTION MATERIALS

2021 ◽  
Vol 8 (2) ◽  
pp. 48-57
Author(s):  
Latika Ulfah ◽  
Muhammad Kusasi ◽  
Almubarak Almubarak
Author(s):  
Y. R. Chen ◽  
Y. F. Huang ◽  
W. S. Chen

Acid phosphatases are widely distributed in different tisssues of various plants. Studies on subcellular localization of acid phosphatases show they might be present in cell wall, plasma lemma, mitochondria, plastid, vacuole and nucleus. However, their localization in rice cell varies with developmental stages of cells and plant tissues. In present study, acid phosphatases occurring in root cap are examined.Sliced root tips of ten-day-old rice(Oryza sativa) seedlings were fixed in 0.1M cacodylate buffer containing 2.5% glutaraldehyde for 2h, washed overnight in same buffer solution, incubated in Gomori's solution at 37° C for 90min, post-fixed in OsO4, dehydrated in ethanol series and finally embeded in Spurr's resin. Sections were doubly stained with uranyl acetate and lead citrate, and observed under Hitachi H-600 at 75 KV.


1981 ◽  
Vol 20 (06) ◽  
pp. 279-282 ◽  
Author(s):  
D. Konstantinovska ◽  
K. Milivojević ◽  
J. Bzenić ◽  
V. Jovanović

Labelling yield and radiochemical purity, higher than 95%, of 99mTc-colloid preparations were determined by using the paper chromatography method. Less than 3% of labelled citric acid, added to the preparation as a buffer solution, has been found in 99mTc-sulphur colloid. High radiochemical purity and optimum size of colloid particles has also been proved by biodistribution studies on experimental animals. The analysis performed has shown that more than 50% of 99mTc-colloid preparations excreted by urine is 99mTcO–, the remaining past 50% being protein bound 99mTc. Biological half-time of excretion of the fast phase is the same for both preparations, i.e. 10 min, while for the slow component it is 120 min in 99mTc-S-colloid and 160 min in 99mTc-Sn colloid.


2003 ◽  
Vol 773 ◽  
Author(s):  
Myung-Il Park ◽  
Jonging Hong ◽  
Dae Sung Yoon ◽  
Chong-Ook Park ◽  
Geunbae Im

AbstractThe large optical detection systems that are typically utilized at present may not be able to reach their full potential as portable analysis tools. Accurate, early, and fast diagnosis for many diseases requires the direct detection of biomolecules such as DNA, proteins, and cells. In this research, a glass microchip with integrated microelectrodes has been fabricated, and the performance of electrochemical impedance detection was investigated for the biomolecules. We have used label-free λ-DNA as a sample biomolecule. By changing the distance between microelectrodes, the significant difference between DW and the TE buffer solution is obtained from the impedance-frequency measurements. In addition, the comparison for the impedance magnitude of DW, the TE buffer, and λ-DNA at the same distance was analyzed.


2019 ◽  
Author(s):  
Jonas Landsgesell ◽  
Oleg Rud ◽  
Pascal Hebbeker ◽  
Raju Lunkad ◽  
Peter Košovan ◽  
...  

We introduce the grand-reaction method for coarse-grained simulations of acid-base equilibria in a system coupled to a reservoir at a given pH and concentration of added salt. It can be viewed as an extension of the constant-pH method and the reaction ensemble, combining explicit simulations of reactions within the system, and grand-canonical exchange of particles with the reservoir. Unlike the previously introduced methods, the grand-reaction method is applicable to acid-base equilibria in the whole pH range because it avoids known artifacts. However, the method is more general, and can be used for simulations of any reactive system coupled to a reservoir of a known composition. To demonstrate the advantages of the grand-reaction method, we simulated a model system: A solution of weak polyelectrolytes in equilibrium with a buffer solution. By carefully accounting for the exchange of all constituents, the method ensures that all chemical potentials are equal in the system and in the multi-component reservoir. Thus, the grand-reaction method is able to predict non-monotonic swelling of weak polyelectrolytes as a function of pH, that has been known from mean-field predictions and from experiments but has never been observed in coarse-grained simulations. Finally, we outline possible extensions and further generalizations of the method, and provide a set of guidelines to enable safe usage of the method by a broad community of users.<br><br>


1985 ◽  
Vol 17 (10) ◽  
pp. 39-41 ◽  
Author(s):  
A. Schnattinger

Ten litres of tapwater were seeded with 200 µl (8×108 HAV particles) of a commercial (Organon Teknika) suspension of hepatitis A virus. Following WALTER and RÜDIGER (1981), the contaminated tapwater was treated with a two-stage technique for concentration of viruses from solutions with low virus titers. The two-stage technique consists of aluminium hydroxideflocculation (200 mg/l Al2(SO4)3. 18 H2O, pH 5,4-5,6) as first stage, the second stage of a lysis of aluminium hydroxidegel with citric acid/sodium citrate-buffer (pH 4,7; 1 ml/l sample), separation of viruses from the lysate by ultracentrifugation and suspension in 1 ml phosphate buffer solution (pH 7,2). A commercial solid phase enzyme-linked immunosorbent assay (ELISA) was used for the detection of HAV. HAV was detecterl in the 10.000:1 concentrates, but not in the seeded 101 samples. Approximately 4×108 of the inoculated 8×108 HAV particles were found in the 1 ml concentrates. The efficiency of detection is about 50%, the virus concentration 5000-fold. Although the percentage loss of HAV in comparison with concentration by means of membrane filtration is similar, the ultracentrifugation method yields a larger sample/concentrate ratio, so that smaller amounts of HAV can be detected more efficiently because of the smaller end-volume.


2019 ◽  
Vol 16 (10) ◽  
pp. 940-950 ◽  
Author(s):  
Jiandong Yu ◽  
Zhi Chen ◽  
Yan-zhi Yin ◽  
Chaoyuan Tang ◽  
Enying Hu ◽  
...  

Background: In this study, a liposomal gel based on a pH-gradient method was used to increase the skin-layer retention of monocrotaline (MCT) for topical administration. Methods: Using the Box-Behnken design, different formulations were designed to form liposome suspensions with optimal encapsulation efficiency (EE%) and stability factor (KE). In order to keep MCT in liposomes and accumulate in skin slowly and selectively, MCT liposome suspensions were engineered into gels. Results: A pH-gradient method was used to prepare liposome suspensions. The optimal formulation of liposome suspensions (encapsulation efficiency: 83.10 ± 0.21%) was as follows: MCT 12 mg, soybean phosphatidyl choline (sbPC) 200 mg, cholesterol (CH) 41 mg, vitamin E (VE) 5 mg, and citric acid buffer solution (CBS) 4.0 10 mL (pH 7.0). The final formulation of liposomal gels consisted of 32 mL liposome suspensions, 4.76 mL deionized water, 0.40 g Carbopol-940, 1.6 g glycerol, 0.04 g methylparaben, and a suitable amount of triethanolamine for pH value adjustment. The results of in vitro drug release showed that MCT in liposomal gels could be released in 12 h constantly in physiological saline as a Ritger-Peppas model. Compared with plain MCT in gel form, liposomal MCT in gel had higher skin retention in vitro. Conclusion: In this study, liposomal gels were formed for greater skin retention of MCT. It is potentially beneficial for reducing toxicities of MCT by topical administration with liposomal gel.


2019 ◽  
Vol 15 (7) ◽  
pp. 762-775
Author(s):  
Ramu Ivaturi ◽  
Thuttagunta Manikya Sastry ◽  
Satyaveni Sunkara

Background: Cefoperazone Sulbactam injection is a cephalosporin antibiotic with a β- lactamase inhibitor used in the treatment for intra abdominal infections, Urinary track infections, surgical infections, etc. The combination is not official in any of the pharmacopeia for their content and impurities determination. Introduction: The present study involves the development of a simple, rapid, accurate, sensitive and stability indicating RP-HPLC method for the quantitative estimation of Cefoperazone Sulbactam mixture and its impurities in bulk and pharmaceutical dosage forms. Methods: 0.005 M Tetrabutyl ammonium hydroxide buffer solution pH adjusted to 6.80 and Acetonitrile combination has been used in a gradient programme with a flow rate of 1.0 ml/min. The retention time of Cefoperazone and Sulbactam were observed at around 8.5 and 19.5 minutes respectively. The UV detection was carried out at a wavelength of 230 nm. The chromatographic separation was achieved using Waters xbridge C18-150*4.6 mm, 3.5 µm HPLC column. The method has been validated according to the current International Council for Harmonization (ICH) guidelines for the method validation parameters such as Specificity, linearity, range, accuracy, precision, robustness and sensitivity. Results: The validation results indicate that the method is specific, as the known impurities and other impurities formed during the forced degradation studies were not co-eluting with the main components. Moreover, all these impurities were found to be spectrally pure, proving the stability indicating power of the method. The linearity and range of the method is in the range of 0.01-150%, highly accurate (100.2%), precise (<1%) and robust. Conclusion: The proposed method was accurate and specific for the quantitative analysis of Cefoperazone and Sulbactam and their related impurities in the sterile mixture. Hence the proposed method can be used for the quantification of impurities in routine as well as stability analysis in the development as well as quality control laboratories.


2020 ◽  
Vol 04 ◽  
Author(s):  
Vigen G. Barkhudaryan ◽  
Gayane V. Ananyan ◽  
Nelli H. Karapetyan

Background: The processes of destruction and crosslinking of macromolecules occur simultaneously under the influence of ultraviolet (UV) radiation in synthetic polymers, dry DNA and their concentrated solutions. Objective: The effect of UV radiation on calf thymus DNA in dilute solutions subjected to UV- irradiation was studied in this work. Method: The calf thymus DNA was studied in dilute solutions using viscometry, absorption spectroscopy and electrophoresis. Results: It was shown, that at a low concentration of DNA in the buffer solution ([DNA] = 85 μg / ml) under the influence of UV radiation, the processes of destruction of macromolecules and an increase in their flexibility predominate, which is accompanied by a gradual decrease in the viscosity of their solution. In addition, due to the low concentration of the solution, intramolecular crosslinking of macromolecules predominates, which also reduces their size and, consequently, the viscosity of the solution. Conclusion: It was concluded, that in dilute DNA solutions, due to the predominance of the processes of intramolecular crosslinking of macromolecules over intermolecular, only constant processes of decreasing the sizes of DNA macromolecules occur. As a result, its solubility remains virtually unchanged during UV irradiation. The described comments are also excellently confirmed by the results of absorption spectroscopy and electrophoresis


Sign in / Sign up

Export Citation Format

Share Document