Numerical Simulation of the Potential Flow around a Submerged Hydrofoil with Fully Nonlinear Free-Surface Conditions

2018 ◽  
Vol 341 ◽  
pp. 238-252
Author(s):  
Jian Hu ◽  
Lei Guo ◽  
Shili Sun
2019 ◽  
Vol 154 ◽  
pp. 103579 ◽  
Author(s):  
Christos E. Papoutsellis ◽  
Marissa L. Yates ◽  
Bruno Simon ◽  
Michel Benoit

2007 ◽  
Vol 51 (01) ◽  
pp. 47-64
Author(s):  
James C. Huan ◽  
Thomas T. Huang

A fast turnaround and an accurate computational fluid dynamics (CFD) approach for ship total resistance prediction is developed. The approach consists of a nonlinear free surface potential flow solver (PShip code) with a wet-or-dry transom stern model, and a Reynolds-averaged Navier-Stokes (RANS) equation solver that solves viscous free surface flow with a prescribed free surface given from the PShip. The prescribed free surface RANS predicts a viscous correction to the pressure resistance (viscous form) and viscous flow field around the hull. The viscous free surface flow solved this way avoids the time-consuming RANS iterations to resolve the free surface profile. The method, however, requires employing a flow characteristic-based nonreflecting boundary condition at the free surface. The approach can predict the components of ship resistance, the associated wave profile around the hull, and the sinkage and trim of the ship. Validation of the approach is presented with Wigley, Series 60 (CB = 0.6), and NSWCCD Model 5415 hulls. An overall accuracy of ±2% for ship total resistance prediction is achieved. The approach is applied to evaluating the effects of a stern flap on a DD 968 model on ship performance. An empirical viscous form resistance formula is also devised for a quick ship total resistance estimate.


Author(s):  
Zaibin Lin ◽  
Ling Qian ◽  
Wei Bai ◽  
Zhihua Ma ◽  
Hao Chen ◽  
...  

Abstract A 3-Dimensional numerical wave tank based on the fully nonlinear potential flow theory has been developed in OpenFOAM, where the Laplace equation of velocity potential is discretized by Finite Volume Method. The water surface is tracked by the semi-Eulerian-Lagrangian method, where water particles on the free surface are allowed to move vertically only. The incident wave is generated by specifying velocity profiles at inlet boundary with a ramp function at the beginning of simulation to prevent initial transient disturbance. Additionally, an artificial damping zone is located at the end of wave tank to sufficiently absorb the outgoing waves before reaching downstream boundary. A five-point smoothing technique is applied at the free surface to eliminate the saw-tooth instability. The proposed wave model is validated against theoretical results and experimental data. The developed solver could be coupled with multiphase Navier-Stokes solvers in OpenFOAM in the future to establish an integrated versatile numerical wave tank for studying efficiently wave structure interaction problems.


1996 ◽  
Vol 118 (3) ◽  
pp. 174-183
Author(s):  
M. L. Wang ◽  
A. W. Troesch ◽  
B. Maskew

A comparative study of two different mixed Eulerian-Lagrangian methods is presented. Representative numerical simulations of oscillatory flare-slamming flows are given. Computations based on these two different numerical schemes, i.e., a desingularized method using Rankine ring sources and a source-doublet panel method (e.g., USAERO/FSP©), are compared with experiments. Fourier coefficients of the simulated time histories and experimentally measured forces are given for detailed error comparisons. The numerical simulations demonstrate the ranges of applicability of these two methods. Both are shown to be efficient and robust time-stepping schemes for the fully nonlinear free-surface problem studied here.


Author(s):  
Palaniswamy Ananthakrishnan

The hydrodynamics of a rectangular, floating twin hull under heave oscillation is analyzed to determine viscous and nonlinear effects on the radiation hydrodynamics of multi-hulls, in particular, at the resonant frequency corresponding to the piston (Helmholtz) mode of wave motions. A second-order finite-difference method based on boundary-fitted coordinates is used for the solution of the incompressible Navier-Stokes equations together with exact nonlinear viscous boundary conditions. To separate the viscosity effects from the nonlinear free-surface effects, through comparison of results, nonlinear inviscid results are also obtained using a boundary-fitted curvilinear coordinates based finite difference method. The nonlinear inviscid algorithm is based on the Eulerian-Lagrangian formulation of the nonlinear free-surface flow. The nonlinear results are compared with the linear potential-flow results obtained by Yeung and Seah [20] to quantify the combined nonlinear and viscous effects on the wave forces. The present results show the overall behavior of the wave motion to be similar to that predicted by the linear potential-flow theory [20]. Our results show that the effects of nonlinearity and viscosity on the wave motion can be significant for the Helmholtz mode, particularly for small separation distance between the hulls, which result in large vertical oscillation of the mean surface between the hulls. For small amplitudes of oscillation, the hydrodynamic pressure forces computed in the present analysis are in striking agreement with that given by the linear potential-flow analysis of Yeung and Seah [20].


1990 ◽  
Vol 34 (02) ◽  
pp. 92-104
Author(s):  
N. Kolluru Venkat ◽  
M. L. Spaulding

A two-dimensional potential-flow model is employed to predict the wave and flow fields generated by wedge, circular, and semicircular cylinders and ship-shaped bodies in forced heaving motion. The case of a wedge penetrating still fluid at constant velocity is also studied. The model solves the potential flow equation, including the full nonlinear free-surface boundary conditions on a boundary-fitted coordinate system. The model equations are solved using a second-order finite-difference technique with a modified Euler method for the time domain and a successive over relaxation procedure for the spatial domain. Model predictions for the force coefficients and phase angles and the associated hydrodynamic mass and damping coefficients of the heaving bodies are generally in good agreement with available analytic theories and data for the dimensionless frequency range, 0


2018 ◽  
Vol 28 (3) ◽  
pp. 248-254 ◽  
Author(s):  
Georgios Fourtakas ◽  
Peter Stansby ◽  
Benedict Rogers ◽  
Steven Lind ◽  
Shiqiang Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document