ISSUES REGARDING TEACHING WAVEGUIDING AND SIGNAL TRANSMISSION THROUGH OPTICAL FIBERS

Author(s):  
Gerasimos Pagiatakis ◽  
Nikolaos Voudoukis ◽  
Dimitrios Uzunidis
2013 ◽  
Vol 20 (4) ◽  
pp. 697-704 ◽  
Author(s):  
Krzysztof Skorupski

Abstract This paper proposes a method for adjusting light waves propagating in systems composed of photonic fibers, light sources and detection elements. The paper presents the properties of these connections in terms of the loss of signal transmission. Different fiber core areas were analyzed, and measurements of the mode-field diameters (MFDs) of selected fiber structures are presented. The study analyzed two types of LMA (Large Mode Area) fiber structures, and the mode-field diameters of these structures were measured on the basis of the radiation distribution obtained under near-field conditions. The results are compared to the values obtained for a SMF-28 single-mode fiber. The LMA structures analyzed in the paper are characterized by low sensitivity of the MFD parameter to the length of transmitted waves, which creates the possibility of their use as intermediate fibers when connecting optical fibers of different diameters. In the wavelength range from 800 nm to 1600 nm, a 3.5% MFD change was observed for the first investigated LMA structure, and a 1% change was observed for the second. In addition, measurements of the mode-field diameters were also made using the transverse offset method for comparison of the results.


2019 ◽  
Vol 2 (2) ◽  
pp. 75-81
Author(s):  
Aprinal Adila Asril

This research aims to design practicum modules for optical cable transmission systems with fiber optic cable (fiber optic) connection systems. This research was conducted by design and experimental methods. The practicum module that is designed consists of the transmitter and receiver parts using a Digital modulation system. The results of this module design will be tested, measured, and analyzed in the delivery of information using FSK digital modulation and the damping effect of informatio received due to the connection of optical fibers to the transmission system. Splicing is done using the fusion splicer (splising) method and adapters. The two connection methods will be compared to the measurement results, especially the damping value. The results of the study are an Optical practicum module using optical signal transmission media as well as a practicum module (jobsheet). The module that is designed will be one of the Practicum modules to support the eyes of the optical fiber communication system in the State Polytechnic Telecommunications Engineering Study Program.   Keyword: Optical cable, fusion splicer, adapter


2021 ◽  
Vol 3 (1) ◽  
pp. 65-73
Author(s):  
Bambang Widiyatmoko ◽  
Mefina Y. Rofianingrum

Research has been carried out to further investigate specifically the effect of sand powder, both the size of the sand grains and the thickness of the sand powder on the photodetector output as an advanced study of the single-mode optical fiber microbending loss theory in sand grains to pressure. This was done to investigate the response of optical fibers due to microbending loss to the load and determine the size of the sand particles that are most effectively used as a compiler of load sensors. The principle works to test the response of load sensors based on single-mode fiber optic microbending loss in the form of photodetector output when given a large variety of pressure. The method used in this research is to observe the reduction in the intensity of the light transmitted through optical fibers in the form of a voltage drop that is read by MMD that is connected to the photodetector. The reduced light intensity shows that the load sensor experiences optical attenuation of the laser as a light source with a wavelength of 1550 nm and a power of 1.47 mW. Microbending loss is caused by mechanical pressure that can change the direction of optical signal transmission and the radius of the curve is equal to or less than the diameter of a bare optical fiber. Observations were made using 12 load sensors with variations in the size of the sand grains in each diameter of the hose. The results of this study obtained the size of the most effective grains of sand providing microscopic curvature in the optical fiber that is 0.05 mm in terms of the correlation between the response of sensors with various diameters to changes in pressure.


Author(s):  
Aayush Kumar Jaiswal ◽  
Ari Hokkanen ◽  
Markku Kapulainen ◽  
Alexey Khakalo ◽  
Nonappa ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 2991
Author(s):  
Cosimo Campanella ◽  
Vincenzo De Michele ◽  
Adriana Morana ◽  
Gilles Mélin ◽  
Thierry Robin ◽  
...  

Signal transmission over optical fibers in the ultraviolet to near-infrared domains remains very challenging due to their high intrinsic losses. In radiation-rich environments, this is made even more difficult due to the radiation-induced attenuation (RIA) phenomenon. We investigated here how the number of hydroxyl groups (OH) present in multi-mode (MM) pure-silica core (PSC) optical fibers influences the RIA levels and kinetics. For this, we tested three different fiber samples: one “wet”, one “dry” and one with an intermediate “medium” OH content. The RIA of the three samples was measured in the 400–900 nm (~3 eV to ~1.4 eV) spectral range during and after an X-ray irradiation at a dose rate of 6 Gy(SiO2) s−1 up to a total accumulated dose of 300 kGy(SiO2). Furthermore, we evaluated the H2-pre-loading efficiency in the medium OH sample to permanently improve both its intrinsic losses and radiation response in the visible domain. Finally, the spectral decomposition of the various RIA responses allows us to better understand the basic mechanisms related to the point defects causing the excess of optical losses. Particularly, it reveals the relationship between the initial OH groups content and the generation of non-bridging oxygen hole centers (NBOHCs). Moreover, the presence of hydroxyl groups also affects the contribution from other intrinsic defects such as the self-trapped holes (STHs) to the RIA in this spectral domain.


Sign in / Sign up

Export Citation Format

Share Document