scholarly journals Study of Microbending Loss Single Mode Optic Fiber in Sand Powder Against Pressure

2021 ◽  
Vol 3 (1) ◽  
pp. 65-73
Author(s):  
Bambang Widiyatmoko ◽  
Mefina Y. Rofianingrum

Research has been carried out to further investigate specifically the effect of sand powder, both the size of the sand grains and the thickness of the sand powder on the photodetector output as an advanced study of the single-mode optical fiber microbending loss theory in sand grains to pressure. This was done to investigate the response of optical fibers due to microbending loss to the load and determine the size of the sand particles that are most effectively used as a compiler of load sensors. The principle works to test the response of load sensors based on single-mode fiber optic microbending loss in the form of photodetector output when given a large variety of pressure. The method used in this research is to observe the reduction in the intensity of the light transmitted through optical fibers in the form of a voltage drop that is read by MMD that is connected to the photodetector. The reduced light intensity shows that the load sensor experiences optical attenuation of the laser as a light source with a wavelength of 1550 nm and a power of 1.47 mW. Microbending loss is caused by mechanical pressure that can change the direction of optical signal transmission and the radius of the curve is equal to or less than the diameter of a bare optical fiber. Observations were made using 12 load sensors with variations in the size of the sand grains in each diameter of the hose. The results of this study obtained the size of the most effective grains of sand providing microscopic curvature in the optical fiber that is 0.05 mm in terms of the correlation between the response of sensors with various diameters to changes in pressure.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. A. Perez-Herrera ◽  
M. Bravo ◽  
P. Roldan-Varona ◽  
D. Leandro ◽  
L. Rodriguez-Cobo ◽  
...  

AbstractIn this work, an experimental analysis of the performance of different types of quasi-randomly distributed reflectors inscribed into a single-mode fiber as a sensing mirror is presented. These artificially-controlled backscattering fiber reflectors are used in short linear cavity fiber lasers. In particular, laser emission and sensor application features are analyzed when employing optical tapered fibers, micro-drilled optical fibers and 50 μm-waist or 100 μm-waist micro-drilled tapered fibers (MDTF). Single-wavelength laser with an output power level of about 8.2 dBm and an optical signal-to-noise ratio of 45 dB were measured when employing a 50 μm-waist micro-drilled tapered optical fiber. The achieved temperature sensitivities were similar to those of FBGs; however, the strain sensitivity improved more than one order of magnitude in comparison with FBG sensors, attaining slope sensitivities as good as 18.1 pm/με when using a 50 μm-waist MDTF as distributed reflector.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4150 ◽  
Author(s):  
Soongho Park ◽  
Sunghwan Rim ◽  
Ju Kim ◽  
Jinho Park ◽  
Ik-Bu Sohn ◽  
...  

A method for adjusting the working distance and spot size of a fiber probe while suppressing or enhancing the back-coupling to the lead-in fiber is presented. As the optical fiber probe, a lensed optical fiber (LOF) was made by splicing a short piece of coreless silica fiber (CSF) on a single-mode fiber and forming a lens at the end of the CSF. By controlling the length of the CSF and the radius of lens curvature, the optical properties of the LOF were adjusted. The evolution of the beam in the LOF was analyzed by using the Gaussian ABCD matrix method. To confirm the idea experimentally, 17 LOF samples were fabricated and analyzed theoretically and also experimentally. The results show that it is feasible in designing the LOF to be more suitable for specific or dedicated applications. Applications in physical sensing and biomedical imaging fields are expected.


2013 ◽  
Vol 20 (4) ◽  
pp. 697-704 ◽  
Author(s):  
Krzysztof Skorupski

Abstract This paper proposes a method for adjusting light waves propagating in systems composed of photonic fibers, light sources and detection elements. The paper presents the properties of these connections in terms of the loss of signal transmission. Different fiber core areas were analyzed, and measurements of the mode-field diameters (MFDs) of selected fiber structures are presented. The study analyzed two types of LMA (Large Mode Area) fiber structures, and the mode-field diameters of these structures were measured on the basis of the radiation distribution obtained under near-field conditions. The results are compared to the values obtained for a SMF-28 single-mode fiber. The LMA structures analyzed in the paper are characterized by low sensitivity of the MFD parameter to the length of transmitted waves, which creates the possibility of their use as intermediate fibers when connecting optical fibers of different diameters. In the wavelength range from 800 nm to 1600 nm, a 3.5% MFD change was observed for the first investigated LMA structure, and a 1% change was observed for the second. In addition, measurements of the mode-field diameters were also made using the transverse offset method for comparison of the results.


2021 ◽  
Vol 9 ◽  
Author(s):  
Daniel A. Nolan ◽  
Dan T. Nguyen

The capacity of optical fiber communications has grown exponentially since its implementation decades ago. Optical fiber amplifiers, wavelength division multiplexing, and coherent communications have all enabled discontinuous growth. Space division multiplexing is proposed as the next discontinuity. Here tens of modes rather than a single mode are utilized in the transmission. Random scattering due to index fluctuations within the optical fiber cause coupling among the modal channels thereby degrading signal transmission. Principal mode transmission overcomes this limitation. Here a set of modes arrive localized at the fiber output unscattered. We review this methodology as it relates to optical communication capacity, but also as it relates to light localization. We also review the characterization of these modes both theoretically and experimentally.


Author(s):  
José Trinidad Guillen Bonilla ◽  
Alex Guillén-Bonilla ◽  
Rodríguez-Betancourtt Veronica M. ◽  
Héctor Guillen Bonilla ◽  
Antonio Casillas Zamora

The application of the sensors optical fiber in the areas of scientific instrumentation and industrial instrumentation is very attractive due to its numerous advantages. In the industry of civil engineering for example, quasi-distributed sensors made with optical fiber are used for reliable strain and temperature measurements. Here, a quasi-distributed sensor in the frequency domain is discussed. The sensor consists of a series of low-finesse Fabry-Perot interferometers where each Fabry-Perot interferometer acts as a local sensor. Fabry-Perot interferometers are formed by pairs of identical low reflective Bragg gratings imprinted in a single mode fiber. All interferometer sensors have different cavity length, provoking the frequency-domain multiplexing. The optical signal represents the superposition of all interference patterns which can be decomposed using the Fourier transform. The frequency spectrum is analyzed and sensor´s properties were defined. Following, a quasi-distributed sensor was numerically simulated. Our sensor simulation considers sensor properties, signal processing, noise system and instrumentation. The numerical results show the behavior of resolution vs. signal-to-noise ratio. From our results, the Fabry-Perot sensor has high resolution and low resolutions. Both resolutions are conceivable because the FDPA algorithm elaborates two evaluations of Bragg wavelength shift


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015101
Author(s):  
Gangxiao Yan ◽  
Weihua Zhang ◽  
Peng Li ◽  
Qiuhao Jiang ◽  
Meng Wu ◽  
...  

Abstract A switchable and tunable erbium-doped fiber laser with a linear cavity based on fiber Bragg gratings embedded in Sagnac rings is proposed and experimentally verified. Due to the stress birefringence effect and the polarized hole burning effect, which are introduced into the single-mode fiber in the polarization controllers (PCs) by the PCs, the designed laser can achieve seven kinds of laser-states output including three kinds of single-wavelength laser states, three kinds of dual-wavelength laser states and one kind of triple-wavelength laser state. The optical signal-to-noise ratios of the output wavelengths are all higher than 52 dB, and the wavelength shifts are all less than 0.04 nm. Furthermore, the temperature tuning of the wavelength range is also researched, which is about 1.2 nm. Due to advantages, such as low cost, simple structure, easy switching and multiple laser states, the designed laser has great application potential in laser radar, optical fiber sensing and so on.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 521 ◽  
Author(s):  
Georgia Konstantinou ◽  
Karolina Milenko ◽  
Kyriaki Kosma ◽  
Stavros Pissadakis

We demonstrate a three-port, light guiding and routing T-shaped configuration based on the combination of whispering gallery modes (WGMs) and micro-structured optical fibers (MOFs). This system includes a single mode optical fiber taper (SOFT), a slightly tapered MOF and a BaTiO3 microsphere for efficient light coupling and routing between these two optical fibers. The BaTiO3 glass microsphere is semi-immersed into one of the hollow capillaries of the MOF taper, while the single mode optical fiber taper is placed perpendicularly to the latter and in contact with the equatorial region of the microsphere. Experimental results are presented for different excitation and reading conditions through the WGM microspherical resonator, namely, through single mode optical fiber taper or the MOF. The experimental results indicate that light coupling between the MOF and the single mode optical fiber taper is facilitated at specific wavelengths, supported by the light localization characteristics of the BaTiO3 glass microsphere, with spectral Q-factors varying between 4.5 × 103 and 6.1 × 103, depending on the port and parity excitation.


Sign in / Sign up

Export Citation Format

Share Document