Le filtrage des anomalies gravimetriques; une cle pour la comprehension des structures tectoniques du Boulonnais et de l'Artois (France)

2001 ◽  
Vol 172 (3) ◽  
pp. 267-274 ◽  
Author(s):  
Michel Everaerts ◽  
Jean-Louis Mansy

Abstract The geology of the Boulonnais has been well studied since the early part of the last century [Gosselet and Bertaut, 1873; Olry, 1904; Pruvost and Delepine, 1921]. Extensive coal exploration added substantially to the general understanding of the geology of the region but as outcrop is poor, many questions remain. Gravity methods used in the analysis of geological structures have had a long and successful history in helping to study the earth's crust for scientific and applied objectives. Regional gravity data are particularly useful in mapping geographic distribution and configuration of density contrast of rocks. Previous gravity research shows the main trends of the structure. In most cases the regional Bouguer gravity hides the relationship between the geology and the shape of the anomaly caused by the perturbing body. New information can be obtained by filtering the maps. The purpose of filtering a map is to remove unwanted characteristics and enhance desirable characteristics that are diagnostic for the geology. Because of their simple mathematical forms, most potential field filters are in the spectral domain. It is advisable to transform the original unfiltered field to the spectral domain, apply the filter, then transform the filtered map back to the spatial domain for use in the interpretation. Several spectrally filtered versions of the original gravity map are used in this regional interpretation. In the case of the Boulonnais the most useful filters have been the horizontal component and the first vertical derivative. In the first instance computing the horizontal gradients of the gravity field permits us to localise the limit of the blocks and then the fault positions. The gravimetric field above a vertical contact of rock with different density shows a low on the side of the low density rocks and a high on the side of the high density rocks. The inflection point is located just on the contact of the two types of rocks. This contact can be outlined by locating the maxima of the horizontal gradient. In the case of a low dipping contact maxima stay close to the contact, but are displaced down dip. In the second instance the first vertical derivative acts as a booster for the short wavelength; this attenuates or destroys the effect of the regional field. The resulting map shows a better structure because in complex areas they give a better definition of the different bodies by separating their effects. In the case of the Boulonnais the first vertical derivative allows us to distinguish the depressed region from the uplifted one. The structural evolution of the Boulonnais-Artois area includes two main extensional events in the late Palaeozoic-early Cretaceous interval and an inversion in mid-late Palaeocene time. The new gravity data in combination with recent field and published data have provided a new insight into the structure of the Boulonnais-Artois area and a new interpretation is proposed. -- Fault patterns are oriented 110N and 040N in the Boulonnais and 140N in Artois areas. -- The linkage between the faults shows a relay geometry with transfer zones [cf. Morley et al., 1990 and Pea-cock and Sanderson, 1994]. The best example is located between Sangatte (near the tunnel) and Landrethun faults where overlapping synthetic faults with a relay ramp are imaged. -- There is no major continuous fault zone but a complex en echelon fault system. -- Linkage between Boulonnais and Artois fault is not well constrained. An important discontinuity between the two regions is apparent. This model underlines the importance of overlapping fault tips with the generation of transfer zones. These structures are also known in the Wessex and Weald basins [Stoneley, 1982; Chadwick, 1993] where heritage and inversion are significant.

2021 ◽  
Vol 54 (2C) ◽  
pp. 13-28
Author(s):  
Kawtar Benyas

The analysis of the magnetic signatures and gravity gradient values of the Rehamna Massif south of the Moroccan Western Meseta by using Geosoft Oasis Montaj 7.0.1 software, allowed us to detect several useful anomalies to be exploited and which are related to magmatic bodies and structural features within the study area. These data were analyzed by applying several techniques, including the horizontal gradient filters combined with the first vertical derivative. Subsurface structures; such as geological boundaries, faults, dykes and folds, were visualized as lineaments on geophysical maps, then results were compared with structural features provided by previous studies in the region. Thus, the Rehamna Massif structural map shows sets of linear features which may represent faults or boundaries of geological structures, which can be either faults or boundaries of geological structures, and they are mostly oriented in the directions: N-S, NNE-SSW, NE-SW, E-W with the predominance of the NNE-SSW to NE-SW directions. In addition, the super position of the minerals bearing beds or formations were distinguished from gravity and magnetic data processing results. Some of the recognized anomalies are related to the existence of precious metals which belong to the granitic bodies within the study area.


1992 ◽  
Vol 29 (5) ◽  
pp. 962-971 ◽  
Author(s):  
Pierre Keating

Gravity data from the Noranda – Val d'Or region have been reprocessed: the Bouguer anomaly map, the first vertical derivative map, and an apparent density map have been used for geological interpretation of the gravity field in this region. It is found that variations in the Bouguer anomaly can be mainly explained by density structures located within the uppermost 5 km of the crust. The vertical derivative map helps to better locate some geological contacts, and the apparent density map allows the easy distinction between thin and thick batholiths. Generalized inversion was used to calculate density cross sections from the Bouguer anomaly values, and measured surface formation densities were used as constraints. Analysis of a detailed profile in the Rouyn–Noranda area shows that steep north-dipping reflectors observed in a seismic reflection survey are associated with a north-dipping density structure.


Author(s):  
Ullil Gunadi Putra ◽  
William Jhanesta ◽  
Iskandarsyah

The research was conducted in Bittuang, Tana Toraja Regency, South Sulawesi Province, as one of the geothermal prospect areas and targets for the initial stage of the Government exploration drilling program for the 2020-2024 period. One aspect of geothermal is the manifestation control structure as a fluid migration path from below the surface. Therefore, identification of existing structures in the Bittuang geothermal area was carried out and confirmed the surface geological structure contained in the Bittuang geothermal geological map. In determining the presence of a fault and knowing its characteristics such as the type of fault, the direction of the dip, and the magnitude of the dip of the fault, the gravity data is processed using the multi-level second vertical derivative (ML-SVD) method. To strengthen the interpretation, the results from the ML-SVD were matched with the data from the horizontal gradient (HG) method and the geological data of the structure of the study area. From this process, there are 27 faults in the Bittuang geothermal area, two of which are indicated as controlling faults for the manifestation of the Balla group and the Cepeng group. This research is expected to describe faults in the Bittuang geothermal area, which can support detailed exploration activities.


2021 ◽  
pp. 1-73
Author(s):  
Pierre Karam ◽  
Shankar Mitra ◽  
Kurt Marfurt ◽  
Brett M. Carpenter

Synthetic transfer zones develop between fault segments which dip in the same direction, with relay ramps connecting the fault blocks separated by the different fault segments. The characteristics of the transfer zones are controlled by the lithology, deformation conditions, and strain magnitude. The Parihaka fault is a NE-SW trending set of three major en-echelon faults connected by relay ramps in the Taranaki Basin, New Zealand. The structure in the basin is defined by extension during two episodes of deformation between the late Cretaceous and Paleocene and between the Late Miocene and recent. To better understand the evolution of a synthetic transfer zone, we study the geometry and secondary faulting between the individual fault segments in the Parihaka fault system using structural interpretation of 3D seismic data and seismic attributes. This interpretation allows for a unique application of seismic attributes to better study transfer zones. Seismic attributes, including coherence, dip, and curvature are effective tools to understand the detailed geometry and variation in displacement on the individual faults, the nature of secondary faulting along the transfer zones, and the relationship between the faults and drape folds. Seismic characterization of the fault system of Miocene to Pliocene age horizons highlights variations in the degree of faulting, deformation, and growth mechanism associated with different stages of transfer zone development. Coherence, dip, and curvature attributes show a direct correlation with structural parameters such as deformation, folding, and breaching of relay ramps.. All three attributes enhance the visualization of the major and associated secondary faults and better constrain their tectonic history. The observed correlation between seismic attributes and structural characteristics of transfer zones can significantly improve structural interpretation and exploration workflow.


Sign in / Sign up

Export Citation Format

Share Document