Synthetic Transfer Zone Characterization Using Seismic Attributes: An Example from the Parihaka Fault System in the Taranaki Basin, New Zealand.

2021 ◽  
pp. 1-73
Author(s):  
Pierre Karam ◽  
Shankar Mitra ◽  
Kurt Marfurt ◽  
Brett M. Carpenter

Synthetic transfer zones develop between fault segments which dip in the same direction, with relay ramps connecting the fault blocks separated by the different fault segments. The characteristics of the transfer zones are controlled by the lithology, deformation conditions, and strain magnitude. The Parihaka fault is a NE-SW trending set of three major en-echelon faults connected by relay ramps in the Taranaki Basin, New Zealand. The structure in the basin is defined by extension during two episodes of deformation between the late Cretaceous and Paleocene and between the Late Miocene and recent. To better understand the evolution of a synthetic transfer zone, we study the geometry and secondary faulting between the individual fault segments in the Parihaka fault system using structural interpretation of 3D seismic data and seismic attributes. This interpretation allows for a unique application of seismic attributes to better study transfer zones. Seismic attributes, including coherence, dip, and curvature are effective tools to understand the detailed geometry and variation in displacement on the individual faults, the nature of secondary faulting along the transfer zones, and the relationship between the faults and drape folds. Seismic characterization of the fault system of Miocene to Pliocene age horizons highlights variations in the degree of faulting, deformation, and growth mechanism associated with different stages of transfer zone development. Coherence, dip, and curvature attributes show a direct correlation with structural parameters such as deformation, folding, and breaching of relay ramps.. All three attributes enhance the visualization of the major and associated secondary faults and better constrain their tectonic history. The observed correlation between seismic attributes and structural characteristics of transfer zones can significantly improve structural interpretation and exploration workflow.

2019 ◽  
Vol 156 (11) ◽  
pp. 1821-1838
Author(s):  
Bingshan Ma ◽  
Jiafu Qi ◽  
Jiawang Ge

AbstractWe investigate the formation and deformation of transfer zones and their impact on sedimentation during multiphase rifting using a three-dimensional seismic dataset in the Baxian Sag, the onshore part of the Bohai Bay Basin, northern China. The fault system in the study area is dominated by two arcuate, opposing boundary faults, that is, the Niudong and Maxi faults, which form an S-type fault system which does not link together. The fault system and structural-stratigraphic features between the Eocene and Oligocene syn-rift sequences were distinctly different during the Palaeogene rifting. These differences allow us to identify the two-phase transfer zones: (1) a NW–SE-trending Eocene transfer zone linking the NW-tilted Baxian Block and the SE-tilted Raoyang Block , and (2) the N–S-trending Oligocene transfer zone forming along the central part of the S-type fault system between the two inward kinks, and linking S-tilted and N-tilted fault blocks. The two-phase transfer zones comprise transverse boundary fault segments and fault styles which are related to strike-slip motion. The strike-slip faults occurred in the sequence where the transfer zone formed. The transfer zones significantly influenced the syn-rift sediments, drainage catchments and reservoir properties during the periods when they formed, and the two-phase transfer zones represent favourable positions for hydrocarbon accumulation in the Eocene and Oligocene sequences, respectively.


2021 ◽  
pp. 1-19
Author(s):  
Paritosh Bhatnagar ◽  
Pierre Karam ◽  
Sumit Verma

We analyzed a synthetic transfer zone and its associated fault planes and relay ramp in Penobscot, a potential offshore field in the Scotian Basin. Transfer zones are structural areas where one fault dies out and another fault begins, forming a relay ramp in the middle. They can be categorized as divergent, convergent, and synthetic transfer zones depending on the relative location and dipping directions of the faults. These zones not only play an important role in fluid migration but also help interpreters delineate secondary features such as fractures, splay shears, and Riedel faults. Commonly those faults would branch into smaller splays and the relay ramp can get “breached” with connecting faults with the increase of slip. The study area in the Scotian basin is characterized by two major listric normal faults dipping in the same direction giving rise to a synthetic transfer zone. These faults are clearly visible on seismic attributes, including curvature and coherence slices extracted along the top of the Cretaceous Petrel Formation. However, when analyzing the seismic attributes along the overlying Wyandot Formation’s top, we observe channel-like features, which run parallel as well as at an angle to these faults. However, when we performed further analysis using seismic amplitude’s vertical slices, interpreted horizons, and seismic attributes, we found that these features are not channels. We divided the features into two types, the first is parallel to the main faults and can be associated with the grabens formed by synthetic and antithetic secondary faults (NE-SW). The second type is related to the polygonal faulting associated with differential compaction and gravitational loading of the Wyandot Chalk Formation. Apart from the two lineations, there are NNE-SSW oriented lineations which are an impression of basement faulting, and NNW-SSE oriented lineations representing acquisition footprint.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 97
Author(s):  
Junfeng Sun ◽  
Meihong Liu ◽  
Zhen Xu ◽  
Taohong Liao ◽  
Xiangping Hu ◽  
...  

A new type of cylindrical gas film seal (CGFS) with a flexible support is proposed according to the working characteristics of the fluid dynamic seal in high-rotational-speed fluid machinery, such as aero-engines and centrifuges. Compared with the CGFS without a flexible support, the CGFS with flexible support presents stronger radial floating characteristics since it absorbs vibration and reduces thermal deformation of the rotor system. Combined with the structural characteristics of a film seal, an analytical model of CGFS with a flexible wave foil is established. Based on the fluid-structure coupling analysis method, the three-dimensional flow field of a straight-groove CGFS model is simulated to study the effects of operating and structural parameters on the steady-state characteristics and the effects of gas film thickness, eccentricity, and the number of wave foils on the equivalent stress of the flexible support. Simulation results show that the film stiffness increases significantly when the depth of groove increases. When the gas film thickness increases, the average equivalent stress of the flexible support first decreases and then stabilizes. Furthermore, the number of wave foils affects the average foils thickness. Therefore, when selecting the number of wave foils, the support stiffness and buffer capacity should be considered simultaneously.


During the latter part of 1902 and the early months of 1903 I resolved to take as many observations of the rates of dissipation of positive and negative electric charges as possible, and to continue them over the whole 24 hours of the day, and, when opportunity offered, over longer periods. There appeared to be little information regarding the rate of dispersion during the night hours. At about the same time that these observations were being made, Nilsson was doing similar work at Upsala, and found a noticeable maximum value for atmospheric conductivity at about midnight. The observations were made on the Canterbury Plains of New Zealand, at a station about 20 feet above sea-level and about five miles due west from the sea coast. The apparatus used was Elster and Geitel’s Zerstreuungs- apparat , and the formula of reduction used was that given by them, viz:- E = 1/ t log V 0 /V- n / t ' log V' 0 /V' . In this formula E is proportional to the conductivity of the gas surrounding the instrument—for positive or negative charges, as the case may be. The constant “ n ” = ratio of capacity without cylinder ____________________________________ capacity with cylinder was determined by me to be 0·47, as the instrument was always used, with the protecting cover. The cover was always at one height above the base of the instrument, and was set so as to be as nearly co-axial with the discharging cylinder as could be judged by eye. No attempt was made to determine the actual capacity of the condenser cylinder and protecting cover, which would be a somewhat variable quantity owing- (1) to the differences on different days in attempting to cause the two to be co-axial; (2) to a certain amount of looseness in the fit of the shank of the cylinder on to its hole. The value above given for “ n "is the mean of several deter­minations made with different settings of the cover and cylinder. The individual values of “ n ” varied over about 0.03.


2021 ◽  
Author(s):  
Duna Roda-Boluda ◽  
Taylor Schildgen ◽  
Hella Wittmann-Oelze ◽  
Stefanie Tofelde ◽  
Aaron Bufe ◽  
...  

<p>The Southern Alps of New Zealand are the expression of the oblique convergence between the Pacific and Australian plates, which move at a relative velocity of nearly 40 mm/yr. This convergence is accommodated by the range-bounding Alpine Fault, with a strike-slip component of ~30-40 mm/yr, and a shortening component normal to the fault of ~8-10 mm/yr. While strike-slip rates seem to be fairly constant along the Alpine Fault, throw rates appear to vary considerably, and whether the locus of maximum exhumation is located near the fault, at the main drainage divide, or part-way between, is still debated. These uncertainties stem from very limited data characterizing vertical deformation rates along and across the Southern Alps. Thermochronology has constrained the Southern Alps exhumation history since the Miocene, but Quaternary exhumation is hard to resolve precisely due to the very high exhumation rates. Likewise, GPS surveys estimate a vertical uplift of ~5 mm/yr, but integrate only over ~10 yr timescales and are restricted to one transect across the range.</p><p>To obtain insights into the Quaternary distribution and rates of exhumation of the western Southern Alps, we use new <sup>10</sup>Be catchment-averaged erosion rates from 20 catchments along the western side of the range. Catchment-averaged erosion rates span an order of magnitude, between ~0.8 and >10 mm/yr, but we find that erosion rates of >10 mm/yr, a value often quoted in the literature as representative for the entire range, are very localized. Moreover, erosion rates decrease sharply north of the intersection with the Marlborough Fault System, suggesting substantial slip partitioning. These <sup>10</sup>Be catchment-averaged erosion rates integrate, on average, over the last ~300 yrs. Considering that the last earthquake on the Alpine Fault was in 1717, these rates are representative of inter-seismic erosion. Lake sedimentation rates and coseismic landslide modelling suggest that long-term (~10<sup>3</sup> yrs) erosion rates over a full seismic cycle could be ~40% greater than our inter-seismic erosion rates. If we assume steady state topography, such a scaling of our <sup>10</sup>Be erosion rate estimates can be used to estimate rock uplift rates in the Southern Alps. Finally, we find that erosion, and hence potentially exhumation, does not seem to be localized at a particular distance from the fault, as some tectonic and provenance studies have suggested. Instead, we find that superimposed on the primary tectonic control, there is an elevation/temperature control on erosion rates, which is probably transient and related to frost-cracking and glacial retreat.</p><p>Our results highlight the potential for <sup>10</sup>Be catchment-averaged erosion rates to provide insights into the magnitude and distribution of tectonic deformation rates, and the limitations that arise from transient erosion controls related to the seismic cycle and climate-modulated surface processes.</p><p> </p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document