scholarly journals Exploiting Aeromagnetic and Gravity Data Interpretation to Delineate Massif Deposits of Rehamna Area (Western Meseta-Morocco)

2021 ◽  
Vol 54 (2C) ◽  
pp. 13-28
Author(s):  
Kawtar Benyas

The analysis of the magnetic signatures and gravity gradient values of the Rehamna Massif south of the Moroccan Western Meseta by using Geosoft Oasis Montaj 7.0.1 software, allowed us to detect several useful anomalies to be exploited and which are related to magmatic bodies and structural features within the study area. These data were analyzed by applying several techniques, including the horizontal gradient filters combined with the first vertical derivative. Subsurface structures; such as geological boundaries, faults, dykes and folds, were visualized as lineaments on geophysical maps, then results were compared with structural features provided by previous studies in the region. Thus, the Rehamna Massif structural map shows sets of linear features which may represent faults or boundaries of geological structures, which can be either faults or boundaries of geological structures, and they are mostly oriented in the directions: N-S, NNE-SSW, NE-SW, E-W with the predominance of the NNE-SSW to NE-SW directions. In addition, the super position of the minerals bearing beds or formations were distinguished from gravity and magnetic data processing results. Some of the recognized anomalies are related to the existence of precious metals which belong to the granitic bodies within the study area.

Geophysics ◽  
1995 ◽  
Vol 60 (4) ◽  
pp. 1018-1028 ◽  
Author(s):  
Dwain K. Butler

Gravity gradient profiles across subsurface structures that are approximately 2-D contain diagnostic information regarding depth, size, and structure (geometry). Gradient space plots, i.e., plots of horizontal gradient versus vertical gradient, present the complete magnitude and phase information in the gradient profiles simultaneously. Considerable previous work demonstrates the possibility for complete structural interpretation of a truncated plate model from the gradient space plot. The qualitative and quantitative diagnostic information contained in gradient space plots is general, however. Examination of the characteristics of gradient space plots reveals that 2-D structures are readily classified as extended or localized. For example, the truncated plate model is an extended model, while the faulted plate model is a localized model. Comparison of measured or calculated gradient space plots to a model gradient space plot catalog allows a rapid, qualitative determination of structure or geometry. “Corners” of a polygonal cross‐section model are then determined as profile points corresponding to maxima on the vertical gradient profile. A generalized approach to structural interpretation from gravity data consists of (1) determining vertical and horizontal gradient profiles perpendicular to the strike of a 2-D gravity anomaly, (2) determining the structural geometry from the gradient space plot, and (3) locating profile positions of structural corners from the vertical gradient profile. This generalized inversion procedure requires no quantitative information or assumption regarding density contrasts. Iterative forward modeling then predicts the density contrasts. Application of this generalized gravity gradient inversion procedure to high quality gravity data results in an effective density prediction consistent with measured near‐surface densities and the known increase in density with depth in deep sedimentary basins.


Geophysics ◽  
1987 ◽  
Vol 52 (1) ◽  
pp. 118-121 ◽  
Author(s):  
V. J. S. Grauch ◽  
Lindrith Cordell

The horizontal‐gradient method has been used since 1982 to locate density or magnetic boundaries from gravity data (Cordell, 1979) or pseudogravity data (Cordell and Grauch, 1985). The method is based on the principle that a near‐vertical, fault‐like boundary produces a gravity anomaly whose horizontal gradient is largest directly over the top edge of the boundary. Magnetic data can be transformed to pseudogravity data using Fourier techniques (e.g., Hildenbrand, 1983) so that they behave like gravity data; thus the horizontal gradient of pseudogravity also has maximum magnitude directly over the boundary. The method normally is applied to gridded data rather than to profiles. The horizontal‐gradient magnitude is contoured and lines are drawn or calculated (Blakely and Simpson, 1986) along the contour ridges. These lines presumably mark the top edges of magnetic or density boundaries. However, horizontal‐gradient magnitude maxima (gradient maxima) can be offset from a position directly over the boundary for several reasons. Offsets occur when boundaries are not near‐vertical, or when several boundaries are close together. This note predicts these offsets. Many other factors also cause offsets, but they are less straightforward and usually are only significant in local studies; we discuss these factors only briefly.


2014 ◽  
Vol 2 (4) ◽  
pp. SJ65-SJ74 ◽  
Author(s):  
Leandro B. Adriano ◽  
Paulo T. L. Menezes ◽  
Alan S. Cunha

The Barra de São João Graben (BSJG), shallow water Campos Basin, is part of the Cenozoic rift system that runs parallel to the Brazilian continental margin. This system was formed in an event that caused the reactivation of the main Precambrian shear zones of southeastern Brazil in the Paleocene. We proposed a new structural framework of BSJG based on gravity data interpretation. Magnetic data, one available 2D seismic line, and a density well-log of a nearby well were used as constraints to our interpretation. To estimate the top of the basement structure, we separated the gravity effects of deep sources from the shallow basement (residual anomaly). Then, we performed a 2D modeling exercise, in which we kept fixed the basement topography and the density of the sediments, to estimate the density of the basement rocks. Next, we inverted the residual anomaly to recover the depth to the top of the basement. This interpretation strategy allowed the identification of a complex structural framework with three main fault systems: a northeast–southwest-trending normal fault system, a northwest–southeast-trending transfer fault system, and an east–west-trending transfer fault system. These trends divided the graben into several internal highs and lows. Our interpretation was corroborated by the magnetic anomalies. The existence of ultradense and strongly magnetized elongated bodies in the basement was interpreted as ophiolite bodies that were probably obducted by the time of the shutdown of the Proterozoic Adamastor Ocean.


1993 ◽  
Vol 130 (5) ◽  
pp. 583-591 ◽  
Author(s):  
B. C. Chacksfield ◽  
W. De Vos ◽  
L. D'Hooge ◽  
M. Dusar ◽  
M. K. Lee ◽  
...  

AbstractDigital processing and image-based display techniques have been used to generate contour and shaded-relief maps of Belgian aeromagnetic data at a scale of 1:300000 for the whole of Belgium. These highlight the important anomalies and structural trends, particularly over the Brabant Massif. North and vertically illuminated shaded-relief plots, enhanced structural belts trending west–east to northwest–southeast in the Brabant Massif and west–east to southwest–northeast in the core of the Ardennes. The principal magnetic lineaments have been identified from the shaded-relief plots and tentatively correlated to basement structures. Most short lineaments are correlated with individual folds while the more extensive lineaments are correlated with large scale fault structures. Magnetic highs within the Brabant Massif are attributed to folded sediments of the Tubize Group. The magnetic basement in the east of Belgium is sinistrally displaced to the north by an inferred deep NNW–SSE crustal fracture. The Bouguer anomaly map of Belgium identifies the Ardennes as a negative area, and the Brabant Massif as a positive area, with the exception of a WNW–trending gravity low in its western part. The southern margin of the Brabant Massif is defined by a steep gravity gradient coincident with the Faille Bordiere (Border Fault). Trial modelling of the gravity and magnetic data, carried out along profiles across the Brabant and Stavelot massifs, has identified probable acid igneous intrusions in the western part of the Brabant Massif, and a deep magnetic lower density body underlying the whole Ardennes region, which is thought to be a distinctive Precambrian crustal block.


2020 ◽  
Author(s):  
Voltaire Souga Kassia ◽  
Theophile Ndougsa-Mbarga ◽  
Arsène Meying ◽  
Jean Daniel Ngoh ◽  
Steve Ngoa Embeng

Abstract. In the Pitoa-Figuil area (Northern Cameroon), an interpretation of aeromagnetic data was conducted. The aim of this investigation was first to emphasize lineaments hidden under geological formations and secondly to propose two 2.75D models of the subsurface structures. Different magnetic data processing techniques were used, notably horizontal gradient magnitude, analytic signal, and Euler deconvolution. These techniques in combination with the 2.75D modelling to the aeromagnetic anomaly reduced to the equator permit to understand the stratification of the deep and near surface structures, which are sources of the observed anomalies. We managed to put in evidence and characterize 18 faults and some intrusive bodies. According to Euler's solutions, anomaly sources go up to a depth of 5.3 km.


2019 ◽  
Vol 8 (2) ◽  
pp. 1
Author(s):  
Quentin Marc Anaba Fotze ◽  
Charles Antoine Basseka ◽  
Anatole Eugene Djieto Lordon ◽  
Albert Eyike Yomba ◽  
Yves Shandini ◽  
...  

The processing of aeromagnetic and gravity data of the Northern part of Congo Craton (South Cameroon region), between latitudes 2°30’-3°30’ N and longitudes 12°-13° E, permitted the determination of the structural features ccurring within the Precambrian basement (Ntem Complex) southwards and the Pan-African belt (Yaounde Group) northwards. The maxima of the Horizontal Gradient within the study area, were obtained using the Blakely and Simpson method (1986). Those maxima were used to trace the magnetic lineaments of the study area. Furthermore, the Total Horizontal derivative of the Tilt derivative applied on the residual grid of Bouguer anomaly guaranteed the enhancement of linear structures which were automatically extracted using the CET Grid Analysis algorithm. The superimposition of both magnetic and gravity lineaments allowed us to display the structural framework of the area, whose major trending directions are E-W, ENE-WSW, and NE-SW. These major lineament directions are likely to be linked to one or more than a single tectonic event such as the ENE-WSW/NE-SW trends, considered as the subduction direction of the Congo craton beneath the Pan-African belt. These trends may be linked to the Eburnean orogeny and are also said to be connected to the Central African Shear Zone (CASZ). The geophysical lineaments identified in the study are defined as potential targets along which mineralization may have been formed, considering the economic potential of the area.


Geophysics ◽  
1993 ◽  
Vol 58 (11) ◽  
pp. 1588-1595 ◽  
Author(s):  
I. Marson ◽  
E. E. Klingele

Gravity gradiometric data or gravity data transformed into vertical gradient can be efficiently processed in three dimensions for delineating density discontinuities. Model studies, performed with the combined use of maxima of analytic signal and of horizontal gradient and the Euler deconvolution techniques on the gravity field and its vertical gradient, demonstrate the superiority of the latter in locating density contrasts. Particularly in the case of interfering anomalies, where the use of gravity alone fails, the gravity gradient is able to provide useful information with satisfactory accuracy.


Geophysics ◽  
1992 ◽  
Vol 57 (4) ◽  
pp. 637-642 ◽  
Author(s):  
Pierre Keating

One of the main purposes of geophysical mapping is the identification of units that can be related to known geology. On a regional scale, aeromagnetic and gravity maps are the most useful tools presently available, although other techniques such as conductivity mapping (Palacky, 1986) or remote sensing (Watson, 1985) are very helpful in locating lithologic boundaries. Interpretation now makes extensive use of enhanced maps: susceptibility maps for magnetic data, density maps for gravity data, first and second vertical derivative, and horizontal gradient maps for both types of data. The objective of susceptibility and density mapping is to transform the potential field data into a physical property map. For physical property mapping, some hypotheses and simplifications are made. The earth model is assumed to consist of right rectangular prisms of finite (gravity) or infinite (magnetics) depth extent. For ease of data processing, the potential field is interpolated onto a regular rectangular array, so that each point in the array corresponds to one prism.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. B35-B41 ◽  
Author(s):  
Julia B. Curto ◽  
Augusto C.B. Pires ◽  
Adalene M. Silva ◽  
Álvaro P. Crósta

The first direct indication of hydrocarbon occurrence in Remanso do Fogo area (Minas Gerais State, Brazil) was the existence of microseepages. However, Quaternary sedimentary cover in the area made the identification of new occurrences and associated controlling structures quite difficult. This study investigated the spatial distribution of hydrocarbon related gases in shallower to intrasedimentary depths in Remanso do Fogo area, using airborne gamma-ray spectrometry and magnetic data. The geophysical data were processed using techniques designed to suppress the influence of regional geological signatures. Known and possible new occurrences of microseepages were detected by mapping low residual potassium values and high uranium residual values in relation to potassium, termed as DRAD values, which resulted from the subtraction of potassium from uranium residual values, using a Thorium (Th)-normalizing approach. The validation of these occurrences was done based on existing gas geochemistry data in the soil. For the magnetic data, the amplitude of the analytic signal, combined with the total horizontal gradient of the subtraction between the 1200- and 400-meter upward continuations, enhanced the northwest–southeast and east–west magnetic lineaments, which are partially related to the microseepages and the drainage of the area. The distinction of near-surface and deep signatures also allowed the general identification of intrasedimentary and basement structures, which are potentially controlling the occurrences of seepages in the area.


Sign in / Sign up

Export Citation Format

Share Document