scholarly journals Influence of Pore Throat Structure and the Multiphases Fluid Seepage on Mobility of Tight Oil Reservoir

Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Fan Zhang ◽  
Hanmin Xiao ◽  
Zhenxue Jiang ◽  
Xianglu Tang ◽  
Xuewei Liu ◽  
...  

Abstract Mobility is the main factor restricting the production of tight oil. In order to explore the influence of pore throat structure and fluid seepage on the mobility, six tight sandstone samples are selected by high-pressure mercury intrusion, nuclear magnetic resonance, water driving oil experiments, and oil-water relative permeability experiments to discuss the influence of pore structure and multiphases on the mobility of tight oil. The results indicate that with the increase in effective porosity, more oil and water are exchanged, and the mobility of the oil phase is enhanced. The large pore is positively correlated with the mobility of tight oil while the relationship between the mobility of small pore and effective porosity remains unclear. Particularly, the mobility of the tight oil is determined by the matching relationship between the pore throat radius and the sorting of the tight reservoir. Specifically, the smaller the two-phase copermeation zone, the greater the bound water saturation; the greater the slope of the oil phase permeability curve, the less the space for the two phases to flow together; the more the oil blocked by water in the reservoir, the worse the phase mobility. The mobility of tight oil can be divided into four categories by pore throat radius, pore throat sorting coefficient, and bound water saturation.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fengjuan Dong ◽  
Xuefei Lu ◽  
Yuan Cao ◽  
Xinjiu Rao ◽  
Zeyong Sun

Tight sandstone reservoirs have small pore throat sizes and complex pore structures. Taking the Chang 6 tight sandstone reservoir in the Huaqing area of the Ordos Basin as an example, based on casting thin sections, nuclear magnetic resonance experiments, and modal analysis of pore size distribution characteristics, the Chang 6 tight sandstone reservoir in the study area can be divided into two types: wide bimodal mode reservoirs and asymmetric bimodal mode reservoirs. Based on the information entropy theory, the concept of “the entropy of microscale pore throats” is proposed to characterize the microscale pore throat differentiation of different reservoirs, and its influence on the distribution of movable fluid is discussed. There were significant differences in the entropy of the pore throat radius at different scales, which were mainly shown as follows: the entropy of the pore throat radius of 0.01~0.1 μm, >0.1 μm, and <0.01 μm decreased successively; that is, the complexity of the pore throat structure decreased successively. The correlation between the number of movable fluid occurrences on different scales of pore throats and the entropy of microscale pore throats in different reservoirs is also different, which is mainly shown as follows: in the intervals of >0.1 μm and 0.01~0.1 μm, the positive correlation between the occurrence quantity of movable fluid in the wide bimodal mode reservoir is better than that in the asymmetric bimodal mode reservoir. However, there was a negative correlation between the entropy of the pore throat radius and the number of fluid occurrences in the two types of reservoirs in the pore throat radius of <0.01 μm. Therefore, pore throats of >0.1 μm and 0.01~0.1 μm play a controlling role in studying the complexity of the microscopic pore throat structure and the distribution of movable fluid in the Chang 6 tight sandstone reservoir. The above results deepen the understanding of the pore throat structure of tight sandstone reservoirs and present guiding significance for classification evaluation, quantitative characterization, and efficient development of tight sandstone reservoirs.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4102
Author(s):  
Juncheng Qiao ◽  
Xianzheng Zhao ◽  
Jianhui Zeng ◽  
Guomeng Han ◽  
Shu Jiang ◽  
...  

The uncertainties between reservoir quality and gas migration and accumulation in tight sandstone gas reservoirs are intrinsically attributed to complex microscopic pore structures. Integrated analysis including the physical simulation experiment of gas migration and accumulation, X-ray computed tomography (X-CT), and casting thin section (CTS) were conducted on core plug samples collected from the Upper Paleozoic Permian Lower Shihezi and Shanxi tight sandstone of the Daniudi area in the Ordos Basin to investigate the impacts of pore structure on the gas migration and accumulation. Physical simulation suggested that the gas flows in migration in tight sandstone reservoirs were characterized by deviated-Darcy linear flow and non-linear flow regimes. Minimum and stable migration pressure square gradients determined by application of apparent permeability were employed as key parameters to describe gas flow. Pore structure characterization revealed that the tight sandstone reservoir was characterized by wide pore and throat size distributions and poor pore-throat connectivity. The pore–throat combinations could be divided into three types, including the macropore and coarse throat dominant reservoir, full-pore and full-throat form, and meso-small pore and fine throat dominant form. Comparative analyses indicated that pore and throat radii determined the gas flow regimes by controlling the minimum and stable migration pressure gradients. Gas accumulation capacity was dominated by the connected effective porosity, and the gas accumulation process was controlled by the cumulative effective porosity contribution from macropores to micropores. Variations in pore structures resulted in differences in gas migration and accumulation of tight sandstone reservoirs. The macropore and coarse throat-dominant and the full-pore and full-throat reservoirs exhibited greater gas migration and accumulation potentials than the small pore and fine throat dominate form.


2020 ◽  
Vol 12 (1) ◽  
pp. 977-989
Author(s):  
Xinli Zhao ◽  
Zhengming Yang ◽  
Xuewei Liu ◽  
Zhiyuan Wang ◽  
Yutian Luo

AbstractThe characterization of pore throat structure in tight reservoirs is the basis for the effective development of tight oil. In order to effectively characterize the pore -throat structure of tight sandstone in E Basin, China, this study used high-pressure mercury intrusion (HPMI) testing technology and thin section (TS) technology to jointly explore the characteristics of tight oil pore throat structure. The results of the TS test show that there are many types of pores in the tight sandstone, mainly the primary intergranular pores, dissolved pores, and microfractures. Based on the pore throat parameters obtained by HPMI experiments, the pore throat radius of tight sandstone is between 0.0035 and 2.6158 µm. There are two peaks in the pore throat distribution curve, indicating that the tight sandstone contains at least two types of pores. This is consistent with the results of the TS experiments. In addition, based on the fractal theory and obtained capillary pressure curve by HPMI experiments, the fractal characteristics of tight sandstone pore throat are quantitatively characterized. The results show that the tight sandstones in E Basin have piecewise fractal (multifractal) features. The segmentation fractal feature occurs at a pore throat radius of approximately 0.06 µm. Therefore, according to the fractal characteristics, the tight sandstone pore throat of the study block is divided into macropores (pore throat radius > 0.06 µm) and micropores (pore throat radius < 0.06 µm). The fractal dimension DL of the macropores is larger than the fractal dimension DS of the micropores, indicating that the surface of the macropores is rough and the pores are irregular. This study cannot only provide certain support for characterizing the size of tight oil pore throat, but also plays an inspiring role in understanding the tight pore structure of tight sandstone.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 675-684 ◽  
Author(s):  
Xinli Zhao ◽  
Zhengming Yang ◽  
Wei Lin ◽  
Shengchun Xiong ◽  
Yunyun Wei

Abstract Based on the results of rate-controlled mercury-injection experiments, the microscopic pore-throat structure characteristics of tight sandstone in Sha-1 Section and tight limestone in Da’anzhai Section of Sichuan Basin were quantitatively characterized. The results show that the pore radius distribution characteristics of tight oil reservoirs are similar. The main distribution is between 100~190 μm, and the average pore radius is 160 μm. While the distribution of the throat radius of tight sandstone and limestone is quite different, the distribution of the throat of sandstone samples is relatively concentrated, and the distribution of the throat of limestone samples is relatively sparse. There is a good positive correlation between the average throat radius and permeability, but the correlation between fractal dimension and permeability is not obvious. This indicates that the permeability is mainly affected by the radius of the throat. The pore-throat ratio in tight oil reservoirs is relatively large, and the resistance to seepage is greater during development. Therefore, during the development of tight oil, measures should be taken to increase the radius of the throat, reduce the ratio of pore radius to pore-throat radius, and improve the seepage capacity of the reservoir, thereby improving the development of tight oil.


2021 ◽  
Vol 13 (1) ◽  
pp. 1174-1186
Author(s):  
Youzhi Wang ◽  
Cui Mao ◽  
Qiang Li ◽  
Wei Jin ◽  
Simiao Zhu ◽  
...  

Abstract The complex pore throat characteristics are significant factors that control the properties of tight sandstone reservoirs. Due to the strong heterogeneity of the pore structure in tight reservoirs, it is difficult to characterize the pore structure by single methods. To determine the pore throat, core, casting thin sections, micrographs from scanning electron microscopy, rate-controlled mercury injection, and high-pressure mercury injection were performed in member 2 of Xujiahe Formation of Yingshan gasfield, Sichuan, China. The pore throat characteristics were quantitatively characterized, and the distribution of pore throat at different scales and its controlling effect on reservoir physical properties were discussed. The results show that there are mainly residual intergranular pores, intergranular dissolved pores, ingranular dissolved pores, intergranular pores, and micro-fractures in the second member of the Xujiahe Formation tight sandstone reservoir. The distribution range of pore throat is 0.018–10 μm, and the radius of pore throat is less than 1 μm. The ranges of pore radius were between 100 and 200 μm, the peak value ranges from 160 to 180 μm, and the pore throat radius ranges from 0.1 to 0.6 μm. With the increase of permeability, the distribution range of throat radius becomes wider, and the single peak throat radius becomes larger, showing the characteristic of right skew. The large throat of the sandy conglomerate reservoir has an obvious control effect on permeability, but little influence on porosity. The contribution rate of nano-sized pore throat to permeability is small, ranging from 3.29 to 34.67%. The contribution rate of porosity was 48.86–94.28%. Therefore, pore throat characteristics are used to select high-quality reservoirs, which can guide oil and gas exploration and development of tight sandstone reservoirs.


2019 ◽  
Vol 11 (1) ◽  
pp. 37-47 ◽  
Author(s):  
Meng Wang ◽  
Zhaomeng Yang ◽  
Changjun Shui ◽  
Zhong Yu ◽  
Zhufeng Wang ◽  
...  

Abstract Different from conventional reservoirs, unconventional tight sand oil reservoirs are characterized by low or ultra-low porosity and permeability, small pore-throat size, complex pore structure and strong heterogeneity. For the continuous exploration and enhancement of oil recovery from tight oil, further analysis of the origins of the different reservoir qualities is required. The Upper Triassic Chang 8 sandstone of the Yanchang Formation from the Maling Oilfield is one of the major tight oil bearing reservoirs in the Ordos Basin. Practical exploration demonstrates that this formation is a typical tight sandstone reservoir. Samples taken from the oil layer were divided into 6 diagenetic facies based on porosity, permeability and the diagenesis characteristics identified through thin section and scanning electron microscopy. To compare pore structure and their seepage property, a high pressure mercury intrusion experiments (HPMI), nuclear magnetic resonance (NMR), andwater-oil relative permeability test were performed on the three main facies developed in reservoir. The reservoir quality and seepage property are largely controlled by diagenesis. Intense compaction leads to a dominant loss of porosity in all sandstones, while different degrees of intensity of carbonate cementation and dissolution promote the differentiation of reservoir quality. The complex pore structure formed after diagenesis determines the seepage characteristics, while cementation of chlorite and illite reduce the effective pore radius, limit fluid mobility, and lead to a serious reduction of reservoir permeability.


2021 ◽  
pp. 1-15
Author(s):  
A. Larsen ◽  
F. Ahmadhadi ◽  
E. Øian

Summary The initial water saturation in a reservoir is important for both hydrocarbon volume estimation and distribution of multiphase flow properties such as relative permeability. Often, a practical reservoir engineering approach is to relate relative permeability to flow property regions by binning of the initial water saturation. The rationale behind this approach is that initial water saturation is related to both the pore-throat radius distribution and the wettability of the rock, both of which affect relative permeability. However, pore-throat radius and wettability are usually not explicitly included in geomodel property modeling. Therefore, the saturation height model should not only capture an average hydrocarbon pore volume but also reflect the underlying mechanisms from hydrocarbon migration history and its impact on initial water saturation distribution. This work introduces and describes a new term, excess water, for more precise classification of saturation height model scenarios in reservoirs in which multiple mechanisms have interacted and caused a complex water saturation distribution. An example of the presence of transition zones related to drained local perched aquifers (excess water) in oil-down-to (ODT) wells is shown using a limited data set from a North Sea reservoir. The physical basis for drainage and imbibition transition zones connected to both regional and perched aquifers is given. The distribution of initial water saturation in reservoirs containing excess water is demonstrated through numerical modeling of oil migration over millions of years. Highly permeable reservoirs are more likely to have locally trapped water because of lower capillary forces. A static situation occurs in areas where the capillary forces cannot maintain a high enough water saturation for further water drainage. On the other hand, both high- and low-permeability reservoirs may have significant excess water because of ongoing dynamic effects. In both cases, long distances for water to drain laterally to a regional aquifer enhance the possibility for a dynamic excess water situation.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Yunlong Zhang ◽  
Zhidong Bao ◽  
Fei Yang ◽  
Shuwei Mao ◽  
Jian Song ◽  
...  

The characteristics of porosity and permeability in tight clastic rock reservoir have significant difference from those in conventional reservoir. The increased exploitation of tight gas and oil requests further understanding of fluid performance in the nanoscale pore-throat network of the tight reservoir. Typical tight sandstone and siltstone samples from Ordos Basin were investigated, and rate-controlled mercury injection capillary pressure (RMICP) and nuclear magnetic resonance (NMR) were employed in this paper, combined with helium porosity and air permeability data, to analyze the impact of pore-throat structure on the storage and seepage capacity of these tight oil reservoirs, revealing the control factors of economic petroleum production. The researches indicate that, in the tight clastic rock reservoir, largest throat is the key control on the permeability and potentially dominates the movable water saturation in the reservoir. The storage capacity of the reservoir consists of effective throat and pore space. Although it has a relatively steady and significant proportion that resulted from the throats, its variation is still dominated by the effective pores. A combination parameter (ε) that was established to be as an integrated characteristic of pore-throat structure shows effectively prediction of physical capability for hydrocarbon resource of the tight clastic rock reservoir.


2018 ◽  
Vol 8 (8) ◽  
pp. 1272 ◽  
Author(s):  
Bo Jiu ◽  
Wenhui Huang ◽  
Mingqian He ◽  
Chenhang Lv ◽  
Fei Liang

Based on micro-scale casting thin sections, nano-scale SEM images, and the pore distribution map identified through a binary image in Matlab, the pore size distribution and pore throat coordination number of the strata of Upper Paleozoic He8 section tight sandstone in the southeastern Ordos Basin were quantitatively analyzed with the above experimental data. In combination with a high-pressure mercury injection experiment, the pore throat distribution, the pore throat ratio, and the relationships between the characteristics, parameters, and pore permeability were investigated clearly. The results show that the tight sandstone pore space in the study area is dominated by micron-sized intergranular pores, dissolved pores, and intragranular pores. The nano-scale pore throat consisted of clay minerals, intercrystalline pores, and the flake intergranular pores of overgrowth quartz grains. Kaolinite and illite intercrystalline pores occupy the pore space below 600 nm, while the ones above 800 nm are mainly dominated by the intergranular pores of overgrowth quartz grains, and the 600–800 nm ones are transitional zones. The permeability of tight sandstone increases with the average pore throat radius, sorting coefficient, median pore throat radius, and average pore throat number. The porosity is positively correlated with the average pore radius and the average pore throat coordination number, and negatively correlated with the median pore throat radius.


2015 ◽  
Vol 1094 ◽  
pp. 385-388
Author(s):  
Qi Li ◽  
Li You Ye ◽  
Wei Guo An

In condition of bound water, bound water is distributed on surface of pore throat in the form of water film in low permeability and tight sandstone gas reservoir, so bound water reduces the seepage space of the gas and makes gas to occur Special seepage law. This article design physical simulation research experiment about gas seepage law in containing water reservoir. Experimental results explain: Gas seepage curve existed obvious non-linear seepage region in low permeability reservoir, gas slippage effect happens in the low-pressure region, and high-speed non-Darcy seepage happens in the high-pressure region. With the limit of water and pore throat in tight reservoir, gas hardly occurs specific non-linear seepage phenomenon. The critical water saturation which causes gas effective permeability sudden changing is around 30% in low permeability and tight reservoir. The research result has important theoretical significance on establishing corresponding percolation model of single well productivity and efficient development of low permeability and tight sandstone gas reservoir.


Sign in / Sign up

Export Citation Format

Share Document