gan buffer layer
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 14)

H-INDEX

17
(FIVE YEARS 3)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 94
Author(s):  
Pepen Arifin ◽  
Heri Sutanto ◽  
Sugianto ◽  
Agus Subagio

We report the growth of non-polar GaN and AlGaN films on Si(111) substrates by plasma-assisted metal-organic chemical vapor deposition (PA-MOCVD). Low-temperature growth of GaN or AlN was used as a buffer layer to overcome the lattice mismatch and thermal expansion coefficient between GaN and Si(111) and GaN’s poor wetting on Si(111). As grown, the buffer layer is amorphous, and it crystalizes during annealing to the growth temperature and then serves as a template for the growth of GaN or AlGaN. We used scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) characterization to investigate the influence of the buffer layer on crystal structure, orientation, and the morphology of GaN. We found that the GaN buffer layer is superior to the AlN buffer layer. The thickness of the GaN buffer layer played a critical role in the crystal quality and plane orientation and in reducing the cracks during the growth of GaN/Si(111) layers. The optimum GaN buffer layer thickness is around 50 nm, and by using the optimized GaN buffer layer, we investigated the growth of AlGaN with varying Al compositions. The morphology of the AlGaN films is flat and homogenous, with less than 1 nm surface roughness, and has preferred orientation in a-axis.


Author(s):  
Than Phyo Kyaw

The influence of the GaN buffer layer doped with carbon on the avalanche breakdown effect of normally open HEMT AlGaN / AlN / GaN transistors was studied. The avalanche breakdown was simulated in a structure where the gate length is LG = 0.3 mkm, the distance between the source and gate is LSG = 1.5 mkm, and the distance between the gate and drain is LGD = 2.2 mkm. For modeling, consider a layer doped with carbon, the thickness of which is 0.3 mkm, and the layer is located at a distance of 20 nm from the channel. The Simulation showed that with an increase in the concentration of carbon doping of the buffer, the breakdown voltage increases in the range UB = 225 – 360 (V). When the layer thickness changes to 0.4 mkm, the breakdown voltage increases in the range UB = 230 – 446 (V). For a structure where the gate length is LG = 0.8 mkm, the distance between the source and the gate is LSG = 1.0 mkm, the distance between the gate and drain is LGD = 3.0 mkm, the breakdown voltage increases in the range UB = 300 – 622 (V).


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 848
Author(s):  
Ki-Sik Im ◽  
Jae-Hoon Lee ◽  
Yeo Jin Choi ◽  
Sung Jin An

We investigated the effects of GaN buffer resistance of AlGaN/GaN high-electron-mobility transistors (HEMTs) on direct current (DC), low-frequency noise (LFN), and pulsed I-V characterization performances. The devices with the highest GaN buffer resistance were grown on sapphire substrate using two-step growth temperature method without additional compensation doping. The proposed device exhibited the degraded off-state leakage current due to the improved GaN buffer quality compared to the reference devices with relative low buffer resistance, which is confirmed by high resolution X-ray diffraction (HRXRD). However, the proposed device with deep-level defects in GaN buffer layer showed the reduced hysteresis (∆Vth), increased breakdown voltage (BV), and enhanced pulse I-V characteristics. Regardless of GaN buffer resistance, all devices clearly showed 1/f behavior with carrier number fluctuations (CNF) at on-state but followed 1/f2 characteristic at off-state. From the 1/f2 noise characteristics, the extracted trap time constant (τi) of the proposed device can be obtained to be 10 ms, which is shorter than those of the reference devices because of the full compensation of deep-level defects in the GaN buffer layer.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 717
Author(s):  
Ki-Sik Im ◽  
Mallem Siva Pratap Reddy ◽  
Yeo Jin Choi ◽  
Youngmin Hwang ◽  
Sung Jin An ◽  
...  

A tetramethyl ammonium hydroxide (TMAH)-treated normally-off Gallum nitride (GaN) metal-insulator-semiconductor field-effect transistor (MISFET) was fabricated and characterized using low-frequency noise (LFN) measurements in order to find the conduction mechanism and analyze the trapping behavior into the gate insulator as well as the GaN buffer layer. At the on-state, the noise spectra in the fabricated GaN device were 1/fγ properties with γ ≈ 1, which is explained by correlated mobility fluctuations (CMF). On the other hand, the device exhibited Lorentzian or generation-recombination (g-r) noises at the off-state due to deep-level trapping/de-trapping into the GaN buffer layer. The trap time constants (τi) calculated from the g-r noises became longer when the drain voltage increased up to 5 V, which was attributed to deep-level traps rather than shallow traps. The severe drain lag was also investigated from pulsed I-V measurement, which is supported by the noise behavior observed at the off-state.


2019 ◽  
Vol 28 (10) ◽  
pp. 107301 ◽  
Author(s):  
Mei Ge ◽  
Qing Cai ◽  
Bao-Hua Zhang ◽  
Dun-Jun Chen ◽  
Li-Qun Hu ◽  
...  

2019 ◽  
Vol 45 (8) ◽  
pp. 761-764
Author(s):  
T. V. Malin ◽  
D. S. Milakhin ◽  
I. A. Aleksandrov ◽  
V. E. Zemlyakov ◽  
V. I. Egorkin ◽  
...  

2019 ◽  
Vol 215 ◽  
pp. 110985 ◽  
Author(s):  
Ki-Sik Im ◽  
Jinseok Choi ◽  
Youngmin Hwang ◽  
Sung Jin An ◽  
Jea-Seung Roh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document