Identification of Double-layered Water-filled Zones Using TEM: A Case Study in China

2018 ◽  
Vol 23 (3) ◽  
pp. 297-304
Author(s):  
Guoqiang Xue ◽  
Dongyang Hou ◽  
Weizhong Qiu

At present in China, the use of the transient electromagnetic method (TEM) is emerging as a leading geophysical technique for exploration of water-filled zones in coal mines. These zones are more conductive than the host coal and are easy targets to map. However, there is a growing interest for the investigations of double-layered or multi-layered mined-out zones. Therefore, it is necessary to study the feasibility of TEM's abilities to detect double-layered, water-filled voids. In this study, the basic hydrogeological conditions of a survey area, located in the northern China, are described. The corresponding geophysical models of the single- and double-layered water-filled zones are developed from borehole logging data. Then, forward calculations of different models are carried out with 1D numerical simulations. The modeling results show that it is feasible for TEM to identify these types of targets under certain conditions, including instrument sensitivity, low resistivity for the water-filled zones, and shallower depths. Moreover, the field survey for locating double-layered water-filled zones in coal mines in the Datong region of Shanxi Province is verified by well drilling.

2013 ◽  
Vol 689 ◽  
pp. 130-133
Author(s):  
Yun Lei ◽  
Yuan Ping Liu

The Lady Chapel of Bansi Mountain located in Yangqu county of Taiyuan, Shanxi Province is the largest Catholic Pilgrimage site in the northern China. Its building is an important works of the modern religious constructions. This paper utilizes the case-study method. By taking the Lady Chapel in Bansi Mountain as an example this article makes a comprehensive analysis from four aspects, that is, form design, surrounding environmental design, building materials and building structure after the investigation and surveys. Furthermore, a conclusion is made to encourage further study of the modern church buildings.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 900
Author(s):  
Chao Wang ◽  
Hongyan Han ◽  
Lin Sun ◽  
Na Na ◽  
Haiwen Xu ◽  
...  

Whole-plant corn silage is a predominant forage for livestock that is processed in Heilongjiang province (Daqing city and Longjiang county), Inner Mongolia Autonomous Region (Helin county and Tumet Left Banner) and Shanxi province (Taigu and Shanyin counties) of North China; it was sampled at 0, 5, 14, 45 and 90 days after ensiling. Bacterial community and fermentation quality were analysed. During fermentation, the pH was reduced to below 4.0, lactic acid increased to above 73 g/kg DM (p < 0.05) and Lactobacillus dominated the bacterial community and had a reducing abundance after 14 days. In the final silages, butyric acid was not detected, and the contents of acetic acid and ammonia nitrogen were below 35 g/kg DM and 100 g/kg total nitrogen, respectively. Compared with silages from Heilongjiang and Inner Mongolia, silages from Shanxi contained less Lactobacillus and more Leuconostoc (p < 0.05), and had a separating bacterial community from 14 to 90 days. Lactobacillus was negatively correlated with pH in all the silages (p < 0.05), and positively correlated with lactic and acetic acid in silages from Heilongjiang and Inner Mongolia (p < 0.05). The results show that the final silages had satisfactory fermentation quality. During the ensilage process, silages from Heilongjiang and Inner Mongolia had similar bacterial-succession patterns; the activity of Lactobacillus formed and maintained good fermentation quality in whole-plant corn silage.


Author(s):  
Wen-Wei Gao ◽  
Ye-Ting Ma ◽  
Yuan-Yuan Ma ◽  
Run-Li Li ◽  
Jin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document