The Continental Crust beneath the Western Amerasia Basin: Mechanisms of Subsidence

2021 ◽  
Vol 62 (07) ◽  
pp. 721-734
Author(s):  
E.V. Artyushkov ◽  
O.E. Smirnov ◽  
O.E. Chekhovich

Abstract —The western part of the large Amerasia Basin in the Arctic Ocean comprises the smaller basins of Podvodnikov and Makarov. Judging by the sedimentary structure and the crustal subsidence history, both basins were developed on the continental crust despite their 3–4 km water depths. By the early Miocene, prior to the rapid formation of the basins, the crustal surface had been close to the sea level for a long time. Lithospheric stretching had a minor input to the subsidence, which was rather driven mainly by the prograde metamorphism of gabbro in the lower crust and its transformation into denser eclogite. The mechanism of subsidence associated with the metamorphic transformation from gabbro to eclogite implies that high-velocity eclogite belongs to the lower continental crust metamorphosed under the effect of mantle fluids. This idea undermines the seismic and gravity basin models that commonly attribute mafic eclogite to the sub-Moho lithospheric mantle on the basis of P-wave velocities similar to those in peridotite and interprets the crust beneath the Podvodnikov and Makarov basins as thin continental and oceanic crustal types, respectively.

2009 ◽  
Vol 285 (1-2) ◽  
pp. 27-38 ◽  
Author(s):  
D. Brown ◽  
S. Llana-Funez ◽  
R. Carbonell ◽  
J. Alvarez-Marron ◽  
D. Marti ◽  
...  

2019 ◽  
Vol 488 (4) ◽  
pp. 429-433
Author(s):  
V. V. Butsenko ◽  
V. A. Poselov ◽  
S. M. Zholondz ◽  
O. E. Smirnov

The seismic attributes of the basement in the Podvodnikov Basin (primarily its P-wave velocities (5.9-6.2 km/s), the VP /VS ratio (1.71), the characteristic diffraction features of reflections from the basement) indicate the continental origin of the basin and suggest that its tectonic evolution began at the pre-oceanic stage of geological history of the Arctic.


2021 ◽  
Vol 13 (11) ◽  
pp. 2174
Author(s):  
Lijian Shi ◽  
Sen Liu ◽  
Yingni Shi ◽  
Xue Ao ◽  
Bin Zou ◽  
...  

Polar sea ice affects atmospheric and ocean circulation and plays an important role in global climate change. Long time series sea ice concentrations (SIC) are an important parameter for climate research. This study presents an SIC retrieval algorithm based on brightness temperature (Tb) data from the FY3C Microwave Radiation Imager (MWRI) over the polar region. With the Tb data of Special Sensor Microwave Imager/Sounder (SSMIS) as a reference, monthly calibration models were established based on time–space matching and linear regression. After calibration, the correlation between the Tb of F17/SSMIS and FY3C/MWRI at different channels was improved. Then, SIC products over the Arctic and Antarctic in 2016–2019 were retrieved with the NASA team (NT) method. Atmospheric effects were reduced using two weather filters and a sea ice mask. A minimum ice concentration array used in the procedure reduced the land-to-ocean spillover effect. Compared with the SIC product of National Snow and Ice Data Center (NSIDC), the average relative difference of sea ice extent of the Arctic and Antarctic was found to be acceptable, with values of −0.27 ± 1.85 and 0.53 ± 1.50, respectively. To decrease the SIC error with fixed tie points (FTPs), the SIC was retrieved by the NT method with dynamic tie points (DTPs) based on the original Tb of FY3C/MWRI. The different SIC products were evaluated with ship observation data, synthetic aperture radar (SAR) sea ice cover products, and the Round Robin Data Package (RRDP). In comparison with the ship observation data, the SIC bias of FY3C with DTP is 4% and is much better than that of FY3C with FTP (9%). Evaluation results with SAR SIC data and closed ice data from RRDP show a similar trend between FY3C SIC with FTPs and FY3C SIC with DTPs. Using DTPs to present the Tb seasonal change of different types of sea ice improved the SIC accuracy, especially for the sea ice melting season. This study lays a foundation for the release of long time series operational SIC products with Chinese FY3 series satellites.


Author(s):  
Suresh Dande ◽  
◽  
Robert R. Stewart ◽  
Nikolay Dyaur ◽  
◽  
...  

Laboratory physical models play an important role in understanding rock properties and wave propagation, both theoretically and at the field scale. In some cases, 3D-printing technology can be adopted to construct complex rock models faster, more inexpensively, and with more specific features than previous model-building techniques. In this study, we use 3D-printed rock models to assist in understanding the effects of various fluids (air, water, engine oil, crude oil, and glycerol) on the models’ elastic properties. We first used a 3D-printed, 1-in. cube-shaped layered model. This model was created with a 6% primary porosity and a bulk density of 0.98 g/cc with VTI anisotropy. We next employed a similar cube but with horizontal inclusions embedded in the layered background, which contributed to its total 24% porosity (including primary porosity). For air to liquid saturation, P-velocities increased for all liquids in both models, with the highest increase being with glycerol (57%) and an approximately 45% increase for other fluids in the inclusion model. For the inclusion model (dry and saturated), we observed a greater difference between two orthogonally polarized S-wave velocities (Vs1 and Vs2) than between two P-wave velocities (VP0 and VP90). We attribute this to the S2-wave (polarized normal to both the layering and the plane of horizontal inclusions), which appears more sensitive to horizontal inclusions than the P-wave. For the inclusion model, Thomsen’s P-wave anisotropic parameter (ɛ) decreased from 26% for the air case to 4% for the water-saturated cube and to 1% for glycerol saturation. The small difference between the bulk modulus of the frame and the pore fluid significantly reduces the velocity anisotropy of the medium, making it almost isotropic. We compared our experimental results with theory and found that predictions using Schoenberg’s linear slip theory combined with Gassmann’s anisotropic equation were closer to actual measurements than Hudson’s isotropic calculations. This work provides insights into the usefulness of 3D-printed models to understand elastic rock properties and wave propagation under various fluid saturations.


2016 ◽  
Vol 78 (8-6) ◽  
Author(s):  
Rose Nadia ◽  
Rosli Saad ◽  
Nordiana Muztaza ◽  
Nur Azwin Ismail ◽  
Mohd Mokhtar Saidin

In this study, correlation is made between seismic P-wave velocities (Vp) with standard penetration test (SPT-N) values to produce soil parameter estimation for engineering site applications. A seismic refraction tomography (SRT) line of 69 m length was spread across two boreholes with 3 m geophones spacing. The acquired data were processed using Firstpix, SeisOpt2D and surfer8 software. The Vp at particular depths were pinpointed and correlated with geotechnical parameters (SPT-N values) from the borehole records. The correlation between Vp and SPT-N values has been established. For cohesive soils, it is grouped into three categories according to consistencies; stiff, very stiff and hard, having velocity rangesof 575-314 m/s, 808-1483 m/s and 1735-2974 m/s, respectively. For non-cohesive soils, it is also divided into three categories based on the denseness as loose, medium dense and dense with Vp ranges of 528-622 m/s, 900-2846 m/s and 2876-2951 m/s, respectively


2015 ◽  
Vol 58 (5) ◽  
Author(s):  
Sankar N. Bhattacharya

<p>Sensitivity kernels or partial derivatives of phase velocity (<em>c</em>) and group velocity (<em>U</em>) with respect to medium parameters are useful to interpret a given set of observed surface wave velocity data. In addition to phase velocities, group velocities are also being observed to find the radial anisotropy of the crust and mantle. However, sensitivities of group velocity for a radially anisotropic Earth have rarely been studied. Here we show sensitivities of group velocity along with those of phase velocity to the medium parameters <em>V<sub>SV</sub>, V<sub>SH </sub>, V<sub>PV</sub>, V<sub>PH , </sub></em><em>h</em><em> </em>and density in a radially anisotropic spherical Earth. The peak sensitivities for <em>U</em> are generally twice of those for <em>c</em>; thus <em>U</em> is more efficient than <em>c</em> to explore anisotropic nature of the medium. Love waves mainly depends on <em>V<sub>SH</sub></em> while Rayleigh waves is nearly independent of <em>V<sub>SH</sub></em> . The sensitivities show that there are trade-offs among these parameters during inversion and there is a need to reduce the number of parameters to be evaluated independently. It is suggested to use a nonlinear inversion jointly for Rayleigh and Love waves; in such a nonlinear inversion best solutions are obtained among the model parameters within prescribed limits for each parameter. We first choose <em>V<sub>SH</sub></em>, <em>V<sub>SV </sub></em>and <em>V<sub>PH</sub></em> within their corresponding limits; <em>V<sub>PV</sub></em> and <em>h</em> can be evaluated from empirical relations among the parameters. The density has small effect on surface wave velocities and it can be considered from other studies or from empirical relation of density to average P-wave velocity.</p>


2020 ◽  
Author(s):  
Jerome Fortin ◽  
Cedric Bailly ◽  
Mathilde Adelinet ◽  
Youri Hamon

&lt;p&gt;Linking ultrasonic measurements made on samples, with sonic logs and seismic subsurface data, is a key challenge for the understanding of carbonate reservoirs. To deal with this problem, we investigate the elastic properties of dry lacustrine carbonates. At one study site, we perform a seismic refraction survey (100 Hz), as well as sonic (54 kHz) and ultrasonic (250 kHz) measurements directly on outcrop and ultrasonic measurements on samples (500 kHz). By comparing the median of each data set, we show that the P wave velocity decreases from laboratory to seismic scale. Nevertheless, the median of the sonic measurements acquired on outcrop surfaces seems to fit with the seismic data, meaning that sonic acquisition may be representative of seismic scale. To explain the variations due to upscaling, we relate the concept of representative elementary volume with the wavelength of each scale of study. Indeed, with upscaling, the wavelength varies from millimetric to pluri-metric. This change of scale allows us to conclude that the behavior of P wave velocity is due to different geological features (matrix porosity, cracks, and fractures) related to the different wavelengths used. Based on effective medium theory, we quantify the pore aspect ratio at sample scale and the crack/fracture density at outcrop and seismic scales using a multiscale representative elementary volume concept. Results show that the matrix porosity that controls the ultrasonic P wave velocities is progressively lost with upscaling, implying that crack and fracture porosity impacts sonic and seismic P wave velocities, a result of paramount importance for seismic interpretation based on deterministic approaches.&lt;/p&gt;&lt;p&gt;Bailly, C., Fortin, J., Adelinet, M., &amp; Hamon, Y. (2019). Upscaling of elastic properties in carbonates: A modeling approach based on a multiscale geophysical data set. Journal of Geophysical Research: Solid Earth, 124. https://doi.org/10.1029/2019JB018391&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document