Volatile Components in Cordierite and Coexisting Tourmaline and Quartz from Pegmatites of the Kuhilal Deposit (Pamir, Tajikistan)

2021 ◽  
Vol 62 (10) ◽  
pp. 1157-1174
Author(s):  
K.I. Zatolokina ◽  
A.A. Tomilenko ◽  
T.A. Bul’bak ◽  
G.G. Lepezin

Abstract —The compositions of volatile components in cordierite, tourmaline, and quartz from pegmatites of the Kuhilal deposit were studied by pyrolysis-free gas chromatography–mass spectrometry (GC–MS), IR and Raman spectroscopy, and microthermometry, and their comparative analysis was performed. Capillary GC–MS was applied to determine the component composition and relative contents (rel.%) of volatiles from different zones of crystals and fractions of cordierite. It has been established that water and carbon dioxide prevail among them. Among hydrocarbons, aliphatic, cyclic, and oxygenated ones are predominant. Heterocyclic, nitrogenated, and sulfonated compounds have also been found. In tourmaline and quartz, volatile components are present in gas–liquid inclusions; in cordierites, they are localized both in structural cavities and in nonstructural positions.

1986 ◽  
Vol 32 (2) ◽  
pp. 325-328 ◽  
Author(s):  
V A Soo ◽  
R J Bergert ◽  
D G Deutsch

Abstract We describe a quantitative screen for hypnotic-sedative drugs in which we use capillary gas chromatography with a nitrogen-phosphorus detector (GC/NPD) as the primary method and capillary gas chromatography-mass spectrometry (GC-MS) for confirmation. GC retention times of the acid-extracted underivatized drugs were stable (CVs less than 1%), and the detector response varied linearly over a 20-fold concentration range with a mean correlation coefficient for 11 drugs of 0.989. The limits of detection were satisfactory (0.5 mg/L in a 0.5-mL serum sample and 1-microL injection volume), as were precision (average CV 5.2% within day, 6.4% between day). The complementary use of capillary GC-MS not only unambiguously confirms presumptive peaks identified by GC, but also prevents reports of false positives and identifies compounds not included in the quantitative GC screen that may be listed in the GC-MS library.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Yinzheng Ma ◽  
Yingying Wen ◽  
Jinping Chen ◽  
Yunxia Zhang ◽  
Haiying Zhang ◽  
...  

AbstractA rapid and sensitive headspace gas chromatography-mass spectrometry (HS-GC–MS) method was established for the determination of benzyl isothiocyanate (BITC) in the peel, pulp, and seeds of Carica papaya Linn. Tween 80 solution with a concentration of 0.002% (w/v) was chosen as a headspace medium for solving the poor solubility of BITC in water without using organic solvents and ensuring high headspace efficiencies. Extraction parameters had been evaluated and optimized by using an orthogonal design with an OA9(34) table. Optimal headspace conditions were obtained when vials were equilibrated at 80 °C for 20 min at a stirring speed of 375 rpm. The calibration curve obtained by using GC–MS was linear in a concentration range of 10–320 ng/mL. The recoveries of peel, pulp, and seeds ranged from 97.3 to 100.6% with RSDs less than 3.0%. The method is simple, rapid, sensitive, and environmentally friendly. It is suitable for analyzing BITC in papaya fruit and is expected to have important application potential in the extraction of water-insoluble volatile components in foods, plants, medicines, and other samples.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 224
Author(s):  
Yeong-Geun Lee ◽  
Won-Sil Choi ◽  
Seung-Ok Yang ◽  
Jeon Hwang-Bo ◽  
Hyoun-Geun Kim ◽  
...  

Abeliophyllum distichum (Oleaceae), which is the only species in the monotypic genus and is grown only on the Korean peninsula, has a high scarcity value. Its five variants (white, pink, round, blue, and ivory) have different morphological characteristics in terms of the color of petals and sepals or shape of the fruits. Despite its high value, there has been no study on variant classification except in terms of their morphological characteristics. Thus, we performed a volatile component analysis of A. distichum flowers and multivariate data analyses to reveal the relationship between fragments emitted from five variants of A. distichum flowers with their morphological characteristics. As a result, 66 volatile components of this plant were identified by headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS), showing unique patterns for each set of morphological characteristics, especially the color of the petals. These results suggest that morphological characteristics of each variant are related to the volatile composition.


1991 ◽  
Vol 46 (1-2) ◽  
pp. 111-121 ◽  
Author(s):  
W. Greenaway ◽  
J. May ◽  
T. Scaysbrook ◽  
F. R. Whatley

Abstract Propolis was analyzed by gas chromatography-mass spectrometry for both its headspace volatiles and for the less volatile components of its alcoholic extract (propolis balsam). 181 peaks were located of which 171 representing 150 compounds were identified, including 28 identified in propolis for the first time. The majority of compounds were typical of poplar bud exudate.


Sign in / Sign up

Export Citation Format

Share Document