Real Time, Low Cost, Diagnostic Tool for Understanding Oil and Gas Well Performance

2001 ◽  
Vol 40 (06) ◽  
Author(s):  
L.G. Alexander
2021 ◽  
Author(s):  
Klemens Katterbauer ◽  
Waleed Dokhon ◽  
Fahmi Aulia ◽  
Mohanad Fahmi

Abstract Corrosion in pipes is a major challenge for the oil and gas industry as the metal loss of the pipe, as well as solid buildup in the pipe, may lead to an impediment of flow assurance or may lead to hindering well performance. Therefore, managing well integrity by stringent monitoring and predicting corrosion of the well is quintessential for maximizing the productive life of the wells and minimizing the risk of well control issues, which subsequently minimizing cost related to corrosion log allocation and workovers. We present a novel supervised learning method for a corrosion monitoring and prediction system in real time. The system analyzes in real time various parameters of major causes of corrosion such as salt water, hydrogen sulfide, CO2, well age, fluid rate, metal losses, and other parameters. The data are preprocessed with a filter to remove outliers and inconsistencies in the data. The filter cross-correlates the various parameters to determine the input weights for the deep learning classification techniques. The wells are classified in terms of their need for a workover, then by the framework based on the data, utilizing a two-dimensional segmentation approach for the severity as well as risk for each well. The framework was trialed on a probabilistically determined large dataset of a group of wells with an assumed metal loss. The framework was first trained on the training dataset, and then subsequently evaluated on a different test well set. The training results were robust with a strong ability to estimate metal losses and corrosion classification. Segmentation on the test wells outlined strong segmentation capabilities, while facing challenges in the segmentation when the quantified risk for a well is medium. The novel framework presents a data-driven approach to the fast and efficient characterization of wells as potential candidates for corrosion logs and workover. The framework can be easily expanded with new well data for improving classification.


Author(s):  
Dr. Mohamed A. GH. Abdalsadig

As worldwide energy demand continues to grow, oil and gas fields have spent hundreds of billions of dollars to build the substructures of smart fields. Management of smart fields requires integrating knowledge and methods in order to automatically and autonomously handle a great frequency of real-time information streams gathered from those wells. Furthermore, oil businesses movement towards enhancing everyday production skills to meet global energy demands signifies the importance of adapting to the latest smart tools that assist them in running their daily work. A laboratory experiment was carried out to evaluate gas lift wells performance under realistic operations in determining reservoir pressure, production operation point, injection gas pressure, port size, and the influence of injection pressure on well performance. Lab VIEW software was used to determine gas passage through the Smart Gas Lift valve (SGL) for the real-time data gathering. The results showed that the wellhead pressure has a large influence on the gas lift performance and showed that the utilized smart gas lift valve can be used to enhanced gas Lift performance by regulating gas injection from down hole.


2021 ◽  
Author(s):  
Rafael Islamov ◽  
Eghbal Motaei ◽  
Bahrom Madon ◽  
Khairul Azhar Abu Bakar ◽  
Victor Hamdan ◽  
...  

Abstract Dynamic Well Operating Envelop (WOE) allows to ensure that well is maintained and operated within design limits and operated in the safe, stable and profitable way. WOE covers the Well Integrity, Reservoir constraints and Facility limitations and visualizes them on well performance chart (Hamzat et al., 2013). Design and operating limits (such as upper and lower completion/facilities design pressures, sand failure, erosion limitations, reservoir management related limitations etc) are identified and translated into two-dimensional WOE (pressure vs. flowrate) to ensure maximum range of operating conditions that represents safe and reliable operation are covered. VLP/IPR performance curves were incorporated based on latest Validated Well Model. Optimum well operating window represents the maximum range of operating conditions within the Reservoir constraints assessed. By introducing actual Well Performance data the optimisation opportunities such as production/injection enhancement identified. During generating the Well Operating Envelops tremendous work being done to rectify challenges such as: most static data (i.e. design and reservoir limitations) are not digitized, unreliable real-time/dynamic data flow (i.e. FTHP, Oil/Gas rates etc), disintegrated and unreliable well Models and no solid workflows for Flow assurance. As a pre-requisite the workflows being developed to make data tidy i.e.ready and right, and Well Model inputs being integrated to build updated Well Models. Successful WOE prototype is generated for natural and artificially lifted Oil and Gas wells. Optimisation opportunities being identified (i.e. flowline pressure reduction, reservoir stimulation and bean-up) Proactive maintenance is made possible through dynamic WOE as a real time exceptional based surveillance (EBS) tool which is allowing Asset engineers to conduct the well performance monitoring, and maintain it within safe, stable and profitable window. Additionally, it allows to track all Production Enhancement jobs and seamless forecasting for new opportunities.


2004 ◽  
Author(s):  
M.B. Smith ◽  
A. Bale ◽  
L.K. Britt ◽  
L.E. Cunningham ◽  
J.R. Jones ◽  
...  

2021 ◽  
Author(s):  
Cornelis Veeken

Abstract This paper presents a fit-for-purpose gas well performance model that utilizes a minimum set of inflow and outflow performance parameters, and demonstrates the use of this model to describe real-time well performance, to compare well performance over time and between wells, and to generate production forecasts in support of well interventions. The inflow and outflow parameters are directly related to well-known reservoir and well properties, and can be calibrated against common well surveillance and production data. By adopting this approach, engineers develop a better appreciation of the magnitude and uncertainty of gas well and reservoir performance parameters.


2019 ◽  
Vol 9 (13) ◽  
pp. 2695
Author(s):  
J. Jesús Villegas-Saucillo ◽  
José Javier Díaz-Carmona ◽  
Carlos A. Cerón-Álvarez ◽  
Raúl Juárez-Aguirre ◽  
Saúl M. Domínguez-Nicolás ◽  
...  

Oil and gas pipeline networks require the periodic inspection of their infrastructure, which can cause gas and oil leakage with several damages to the environment and human health. For this, non-destructive testing (NDT) techniques of low-cost and easy implementation are required. An option is the metal magnetic memory (MMM) method, which could be used for real-time monitoring defects of ferromagnetic structures based on the analysis of self-magnetic leakage fields distribution around each defect. This method only requires magnetic sensors with high resolution and a data processing system. We present a measurement system of tangential and normal MMM signals of three rectangular defects of an ASTM A-36 steel pipe. This system is formed by a magnetoresistive sensor, an Arduino nano and a virtual instrumentation. The measured magnetic signals have non-uniform distributions around the rectangular defects, which have small differences with respect to the results obtained of a 2D magnetic dipole model. The size of each rectangular defect is related to the amplitude and shape of its tangential and normal MMM signals. The proposed system could be used for real-time monitoring of the size and location of rectangular defects of ferromagnetic pipes. This system does not require expensive equipment, operators with high skill level or a special treatment of the ferromagnetic samples.


SPE Journal ◽  
2014 ◽  
Vol 19 (05) ◽  
pp. 748-760 ◽  
Author(s):  
T.O.. O. Odunowo ◽  
G.J.. J. Moridis ◽  
T.A.. A. Blasingame ◽  
O.M.. M. Olorode ◽  
C.M.. M. Freeman

Summary Low- to ultralow-permeability formations require “special” treatments/stimulation to make them produce economical quantities of hydrocarbon, and at the moment, multistage hydraulic fracturing (MSHF) is the most commonly used stimulation method for enhancing the exploitation of these reservoirs. Recently, the slot-drill (SD) completion technique was proposed as an alternative treatment method in such formations (Carter 2009). This paper documents the results of a comprehensive numerical-simulation study conducted to evaluate the production performance of the SD technique and compare its performance to that of the standard MSHF approach. We investigated three low-permeability formations of interest—namely, a shale-gas formation, a tight-gas formation, and a tight/shale-oil formation. The simulation domains were discretized with Voronoi-gridding schemes to create representative meshes of the different reservoir and completion systems modeled in this study. The results from this study indicated that the SD method does not, in general, appear to be competitive in terms of reservoir performance and recovery compared with the more traditional MSHF method. Our findings indicate that the larger surface area to flow that results from the application of MSHF is much more significant than the higher conductivity achieved by use of the SD technique. However, there may exist cases, for example, a lack of adequate water volumes for hydraulic fracturing, or very high irreducible water saturation that leads to adverse relative permeability conditions and production performance, in which the low-cost SD method may make production feasible from an otherwise challenging (if not inaccessible) resource.


2011 ◽  
Vol 268-270 ◽  
pp. 772-780 ◽  
Author(s):  
Hsiung Cheng Lin ◽  
Liang Yih Liu ◽  
Kuo Hung Pai

Since the past years, the microprocessor (8051) has been still playing an indispensable role as a controller in industry applications because of fast executing process, low-cost, small size and low power consumption, etc. It, however, usually lacks of long distance transmission, graphical interface and vision. On the other hand, VB is now a very popular software package for graphical interface design due to easy exploring and low price. Combining both superiorities as above, this paper develops a remote visional microprocessor-based monitoring and control platform using VB graphical interface. The nearby PC (server) can collect real-time sensing signals from the 8051 through RS232 and transmit it to remote PCs (client) for on line monitoring mechanism via Internet. Also, the client can send the control signals to the server and thus control the 8051. The real-time case study for feeding care in the Pet House is provided to verify its well performance and remote Web-based capability in term of fast, simple and robust performance.


Sign in / Sign up

Export Citation Format

Share Document