Inspiring the Next Generation

2007 ◽  
Vol 01 (02) ◽  
pp. 05-06
Author(s):  
Tony Meggs

Executive Perspective - Attracting, developing, and inspiring the talented young people who will lead the oil and gas industry into the future is one of the biggest challenges facing our industry today. Creating this future will be at least as exciting and demanding as anything we have experienced over the past 30 years.

2021 ◽  
Vol 73 (07) ◽  
pp. 64-64
Author(s):  
Nigel Jenvey

Have you noticed the change in the oil and gas industry over the past year with its engagement in carbon management, decarbonization, and net-zero-emissions targets? Policy support and technology advances in alternative energies have delivered massive cost reduction in renewables more quickly, and to a greater degree, than expected. Over the past few years, more of the world’s capital has been spent on electricity than oil and gas sup-ply, and more than half of all new energy-generation capacity is now renewable. Some elements of society, therefore, have suggested that this is the beginning of the end for the fossil-fuel sector and call for investors to turn away from oil and gas and “leave it in the ground.” In more than a century of almost continuous change, however, the oil and gas industry has a long track record of innovative thinking, creative solutions, and different business models. SPE papers and events that covered decarbonization during the past year show that a wide variety of solutions already exist that avoid, reduce, replace, offset, or sequester greenhouse gas (GHG) emissions. It is clear, therefore, that decarbonization technologies will now be as important as 4D seismic, horizontal wells, and hydraulic fracturing. That is why we now bring you this inaugural Technology Focus feature dedicated to decarbonization. The experience and capability of the entire JPT community in decarbonization is critical. Please enjoy the following summary of three selected papers on the role of natural gas in fuel-switching; carbon capture, use, and storage (CCUS); and hydrogen technologies that deliver the dual challenge of providing more energy with less GHG emission. There are many ways to engage in the SPE decarbonization efforts in the remainder of 2021. Regional events have addressed CCUS, hydrogen, geothermal, and methane. There is also the new SPE Gaia sustainability program to enable and empower all members who wish to engage in the alignment of the future of energy with sustainable development. The Gaia program has an on-demand library of materials, including an existing series on methane, and upcoming similar events on other energy transition, natural capital and regeneration, and social responsibility priorities. Get involved through your SPE section or chapter or contact your regional Gaia liaison to find out what Gaia programming you can support or lead at www.spe.org/en/gaia.


2021 ◽  
Author(s):  
Armstrong Lee Agbaji

Abstract Historically, the oil and gas industry has been slow and extremely cautious to adopt emerging technologies. But in the Age of Artificial Intelligence (AI), the industry has broken from tradition. It has not only embraced AI; it is leading the pack. AI has not only changed what it now means to work in the oil industry, it has changed how companies create, capture, and deliver value. Thanks, or no thanks to automation, traditional oil industry skills and talents are now being threatened, and in most cases, rendered obsolete. Oil and gas industry day-to-day work is progressively gravitating towards software and algorithms, and today’s workers are resigning themselves to the fact that computers and robots will one day "take over" and do much of their work. The adoption of AI and how it might affect career prospects is currently causing a lot of anxiety among industry professionals. This paper details how artificial intelligence, automation, and robotics has redefined what it now means to work in the oil industry, as well as the new challenges and responsibilities that the AI revolution presents. It takes a deep-dive into human-robot interaction, and underscores what AI can, and cannot do. It also identifies several traditional oilfield positions that have become endangered by automation, addresses the premonitions of professionals in these endangered roles, and lays out a roadmap on how to survive and thrive in a digitally transformed world. The future of work is evolving, and new technologies are changing how talent is acquired, developed, and retained. That robots will someday "take our jobs" is not an impossible possibility. It is more of a reality than an exaggeration. Automation in the oil industry has achieved outcomes that go beyond human capabilities. In fact, the odds are overwhelming that AI that functions at a comparable level to humans will soon become ubiquitous in the industry. The big question is: How long will it take? The oil industry of the future will not need large office complexes or a large workforce. Most of the work will be automated. Drilling rigs, production platforms, refineries, and petrochemical plants will not go away, but how work is done at these locations will be totally different. While the industry will never entirely lose its human touch, AI will be the foundation of the workforce of the future. How we react to the AI revolution today will shape the industry for generations to come. What should we do when AI changes our job functions and workforce? Should we be training AI, or should we be training humans?


2021 ◽  
Author(s):  
Alexander Sitnikov ◽  
Sergei Doktor ◽  
Andrei Margarit

Abstract In the recent years the oil and gas industry has started facing an unprecedented number of challenges. The average return on capital in the industry has deteriorated which results in investor mistrust and costs being higher than ever. Debt capital became two times costlier than for alterative types of energy. More conventional oilfields become depleted and new reserves are usually quite complex to develop. These and other challenges such as intense competition between oil and gas companies, the energy transition agenda as well as the volatility of oil prices in the aftermath of the pandemic are pushing the O&G companies to transform themselves. Gazprom Neft introduced the "Asset of the Future" program in late 2018 as a timely response which was aimed at completely transforming the Upstream business model. The main issue with the transformation was the scale of it, which included 10 subsidiaries (or subs) and more than 200 different processes. In this case traditional approaches such as improving each operation one by one would not suffice as the company sought a rapid and highly efficient implementation of changes. As such the program had to develop a new approach that focused on the integration of all business parts and continuous improvement. Integration of people, technology and processes will lead to better collaboration and as a result - to smarter decisions and better execution.


Author(s):  
Warren Brown ◽  
Geoff Evans ◽  
Lorna Carpenter

Over the course of the past 20 years, methods have been developed for assessing the probability and root cause of bolted joint leakage based on sound engineering assessment techniques. Those methods were incorporated, in part, into ASME PCC-1-2010 Appendix O [7] and provide the only published standard method for establishing bolted joint assembly bolt load. As detailed in previous papers, the method can also be used for troubleshooting joint leakage. This paper addresses a series of actual joint leakage cases, outlines the analysis performed to determine root cause of failure and the actions taken to successfully eliminate future incidents of failure (lessons learned).


2007 ◽  
Vol 47 (1) ◽  
pp. 309 ◽  
Author(s):  
S.I. Mackie ◽  
S.H. Begg ◽  
C. Smith ◽  
M.B. Welsh

Business underperformance in the upstream oil and gas industry, and the failure of many decisions to return expected results, has led to a growing interest over the past few years in understanding the impacts of decisionmaking tools and processes and their relationship to decision outcomes. A primary observation is that different decision types require different decision-making approaches to achieve optimal outcomes.Optimal decision making relies on understanding the types of decisions being made and tailoring the type of decision with the appropriate tools and processes. Yet the industry lacks both a definition of decision types and any guidelines as to what tools and processes should be used for what decisions types. We argue that maximising the chances of a good outcome in real-world decisions requires the implementation of such tailoring.


2017 ◽  
Vol 57 (2) ◽  
pp. 489
Author(s):  
Gareth D. Lee ◽  
Simon P. Whitaker ◽  
Martin Wilkes

The issue of poor project performance in the oil and gas industry is not new. It has been discussed since the 1980s and, over the past 30 years, there has been considerable effort put into improving project outcomes. As an industry, we have invested heavily in project management and estimating processes to ensure that reliable data are available for investment decisions. However, recent experience in Australia and elsewhere in the world suggests that little real improvement has been made. This presentation critically examines aspects of project performance and decision making by analysing: the commercial impact that recent cost and schedule outcomes have had on Australian projects; common problems associated with setting and managing cost and schedule expectations throughout the project development process; real (anonymous) examples from projects to indicate how biases affect behaviours, decisions and outcomes; and simple ways to build a more realistic assessment of risk and uncertainty into cost and schedule estimates. We conclude by discussing why this is still important for future Australian projects given the days of complex greenfield megaprojects are likely behind us.


2014 ◽  
Vol 54 (2) ◽  
pp. 516
Author(s):  
James MacGinley ◽  
Brad Calleja

In recent years, Australia has gone through an unprecedented expansion in its oil and gas industry. The demand for capital has been enormous and has resulted in some of the largest project debt financings globally. In the coming years, the funding requirement will change dramatically as projects reach completion; become cash-flow positive; and, owners changing their funding structure from project finance debt to lower cost, lower covenant corporate debt. The development of a number of Australia’s largest oil and gas projects during the past five years coincided with a tightening of capital from the traditional project finance market. This lead to the emergence of export credit agency financing as an integral component of project development. During the past year, however, re-capitalisation of global banks are now re-entering the Australian market and are driving competition and increasing liquidity. This extended abstract covers a review of the funding approaches taken on major Australian LNG projects, including lessons from the funding of CSG projects that may be relevant to other new development markets such as shale gas. It also draws on historical lessons of funding new technologies and provide insight about funding of the next wave of LNG development: floating LNG. The National Australia Bank is one of the largest resources project finance banks globally and is well positioned to provide APPEA’s delegates with relevant insight about the future of debt funding in the oil and gas industry.


2020 ◽  
Vol 992 ◽  
pp. 336-340
Author(s):  
V.A. Gafarova ◽  
J. V. Bazrova ◽  
L.Z. Teltsova

Over the past fifteen years, Russian and foreign scientists have conducted a large amount of research in the development and use of composite materials based on epoxy resins, including the ways to restore structural integrity. In the oil and gas industry, composite materials are used for repair works.


Sign in / Sign up

Export Citation Format

Share Document