Financing alternatives in a changing gas landscape

2014 ◽  
Vol 54 (2) ◽  
pp. 516
Author(s):  
James MacGinley ◽  
Brad Calleja

In recent years, Australia has gone through an unprecedented expansion in its oil and gas industry. The demand for capital has been enormous and has resulted in some of the largest project debt financings globally. In the coming years, the funding requirement will change dramatically as projects reach completion; become cash-flow positive; and, owners changing their funding structure from project finance debt to lower cost, lower covenant corporate debt. The development of a number of Australia’s largest oil and gas projects during the past five years coincided with a tightening of capital from the traditional project finance market. This lead to the emergence of export credit agency financing as an integral component of project development. During the past year, however, re-capitalisation of global banks are now re-entering the Australian market and are driving competition and increasing liquidity. This extended abstract covers a review of the funding approaches taken on major Australian LNG projects, including lessons from the funding of CSG projects that may be relevant to other new development markets such as shale gas. It also draws on historical lessons of funding new technologies and provide insight about funding of the next wave of LNG development: floating LNG. The National Australia Bank is one of the largest resources project finance banks globally and is well positioned to provide APPEA’s delegates with relevant insight about the future of debt funding in the oil and gas industry.

2021 ◽  
Vol 73 (07) ◽  
pp. 64-64
Author(s):  
Nigel Jenvey

Have you noticed the change in the oil and gas industry over the past year with its engagement in carbon management, decarbonization, and net-zero-emissions targets? Policy support and technology advances in alternative energies have delivered massive cost reduction in renewables more quickly, and to a greater degree, than expected. Over the past few years, more of the world’s capital has been spent on electricity than oil and gas sup-ply, and more than half of all new energy-generation capacity is now renewable. Some elements of society, therefore, have suggested that this is the beginning of the end for the fossil-fuel sector and call for investors to turn away from oil and gas and “leave it in the ground.” In more than a century of almost continuous change, however, the oil and gas industry has a long track record of innovative thinking, creative solutions, and different business models. SPE papers and events that covered decarbonization during the past year show that a wide variety of solutions already exist that avoid, reduce, replace, offset, or sequester greenhouse gas (GHG) emissions. It is clear, therefore, that decarbonization technologies will now be as important as 4D seismic, horizontal wells, and hydraulic fracturing. That is why we now bring you this inaugural Technology Focus feature dedicated to decarbonization. The experience and capability of the entire JPT community in decarbonization is critical. Please enjoy the following summary of three selected papers on the role of natural gas in fuel-switching; carbon capture, use, and storage (CCUS); and hydrogen technologies that deliver the dual challenge of providing more energy with less GHG emission. There are many ways to engage in the SPE decarbonization efforts in the remainder of 2021. Regional events have addressed CCUS, hydrogen, geothermal, and methane. There is also the new SPE Gaia sustainability program to enable and empower all members who wish to engage in the alignment of the future of energy with sustainable development. The Gaia program has an on-demand library of materials, including an existing series on methane, and upcoming similar events on other energy transition, natural capital and regeneration, and social responsibility priorities. Get involved through your SPE section or chapter or contact your regional Gaia liaison to find out what Gaia programming you can support or lead at www.spe.org/en/gaia.


2021 ◽  
pp. 251484862110614
Author(s):  
Holly Jean Buck

Can fossil-based fuels become carbon neutral or carbon negative? The oil and gas industry is facing pressure to decarbonize, and new technologies are allowing companies and experts to imagine lower-carbon fossil fuels as part of a circular carbon economy. This paper draws on interviews with experts, ethnographic observations at carbontech and carbon management events, and interviews with members of the public along a suggested CO2 pipeline route from Iowa to Texas, to explore: What is driving the sociotechnical imaginary of circular fossil carbon among experts, and what are its prospects? How do people living in the landscapes that are expected to provide carbon utilization and removal services understand their desirability and workability? First, the paper examines a contradiction in views of carbon professionals: while experts understand the scale of infrastructure, energy, and capital required to build a circular carbon economy, they face constraints in advocating for policies commensurate with this scale, though they have developed strategies for managing this disconnect. Second, the paper describes views from the land in the central US, surfacing questions about the sustainability of new technologies, the prospect of carbon dioxide pipelines, and the way circular carbon industries could intersect trends of decline in small rural towns. Experts often fail to consider local priorities and expertise, and people in working landscapes may not see the priorities and plans of experts, constituting a “double unseeing.” Robust energy democracy involves not just resistance to dominant imaginaries of circular carbon, but articulation of alternatives. New forms of expert and community collaboration will be key to transcending this double unseeing and furthering energy democracy.


2021 ◽  
Author(s):  
Armstrong Lee Agbaji

Abstract Historically, the oil and gas industry has been slow and extremely cautious to adopt emerging technologies. But in the Age of Artificial Intelligence (AI), the industry has broken from tradition. It has not only embraced AI; it is leading the pack. AI has not only changed what it now means to work in the oil industry, it has changed how companies create, capture, and deliver value. Thanks, or no thanks to automation, traditional oil industry skills and talents are now being threatened, and in most cases, rendered obsolete. Oil and gas industry day-to-day work is progressively gravitating towards software and algorithms, and today’s workers are resigning themselves to the fact that computers and robots will one day "take over" and do much of their work. The adoption of AI and how it might affect career prospects is currently causing a lot of anxiety among industry professionals. This paper details how artificial intelligence, automation, and robotics has redefined what it now means to work in the oil industry, as well as the new challenges and responsibilities that the AI revolution presents. It takes a deep-dive into human-robot interaction, and underscores what AI can, and cannot do. It also identifies several traditional oilfield positions that have become endangered by automation, addresses the premonitions of professionals in these endangered roles, and lays out a roadmap on how to survive and thrive in a digitally transformed world. The future of work is evolving, and new technologies are changing how talent is acquired, developed, and retained. That robots will someday "take our jobs" is not an impossible possibility. It is more of a reality than an exaggeration. Automation in the oil industry has achieved outcomes that go beyond human capabilities. In fact, the odds are overwhelming that AI that functions at a comparable level to humans will soon become ubiquitous in the industry. The big question is: How long will it take? The oil industry of the future will not need large office complexes or a large workforce. Most of the work will be automated. Drilling rigs, production platforms, refineries, and petrochemical plants will not go away, but how work is done at these locations will be totally different. While the industry will never entirely lose its human touch, AI will be the foundation of the workforce of the future. How we react to the AI revolution today will shape the industry for generations to come. What should we do when AI changes our job functions and workforce? Should we be training AI, or should we be training humans?


Author(s):  
Warren Brown ◽  
Geoff Evans ◽  
Lorna Carpenter

Over the course of the past 20 years, methods have been developed for assessing the probability and root cause of bolted joint leakage based on sound engineering assessment techniques. Those methods were incorporated, in part, into ASME PCC-1-2010 Appendix O [7] and provide the only published standard method for establishing bolted joint assembly bolt load. As detailed in previous papers, the method can also be used for troubleshooting joint leakage. This paper addresses a series of actual joint leakage cases, outlines the analysis performed to determine root cause of failure and the actions taken to successfully eliminate future incidents of failure (lessons learned).


2007 ◽  
Vol 47 (1) ◽  
pp. 309 ◽  
Author(s):  
S.I. Mackie ◽  
S.H. Begg ◽  
C. Smith ◽  
M.B. Welsh

Business underperformance in the upstream oil and gas industry, and the failure of many decisions to return expected results, has led to a growing interest over the past few years in understanding the impacts of decisionmaking tools and processes and their relationship to decision outcomes. A primary observation is that different decision types require different decision-making approaches to achieve optimal outcomes.Optimal decision making relies on understanding the types of decisions being made and tailoring the type of decision with the appropriate tools and processes. Yet the industry lacks both a definition of decision types and any guidelines as to what tools and processes should be used for what decisions types. We argue that maximising the chances of a good outcome in real-world decisions requires the implementation of such tailoring.


2017 ◽  
Vol 57 (2) ◽  
pp. 489
Author(s):  
Gareth D. Lee ◽  
Simon P. Whitaker ◽  
Martin Wilkes

The issue of poor project performance in the oil and gas industry is not new. It has been discussed since the 1980s and, over the past 30 years, there has been considerable effort put into improving project outcomes. As an industry, we have invested heavily in project management and estimating processes to ensure that reliable data are available for investment decisions. However, recent experience in Australia and elsewhere in the world suggests that little real improvement has been made. This presentation critically examines aspects of project performance and decision making by analysing: the commercial impact that recent cost and schedule outcomes have had on Australian projects; common problems associated with setting and managing cost and schedule expectations throughout the project development process; real (anonymous) examples from projects to indicate how biases affect behaviours, decisions and outcomes; and simple ways to build a more realistic assessment of risk and uncertainty into cost and schedule estimates. We conclude by discussing why this is still important for future Australian projects given the days of complex greenfield megaprojects are likely behind us.


Author(s):  
Diane Austin ◽  
Thomas McGuire

The history of the offshore oil and gas industry in the Gulf of Mexico is one of both progressive and punctuated development. New technologies, forms of work organization, and regulatory regimes have all combined over the past seventy years to influence the evolution of this industry. This paper reports early results of a multiyear, multi-team effort to document this history and its impacts on southern Louisiana. It focuses on the work of one team, applied anthropologists from the University of Arizona, to capture the history from the perspectives of the workers and local entrepreneurs who made this industry happen.


2020 ◽  
Vol 992 ◽  
pp. 336-340
Author(s):  
V.A. Gafarova ◽  
J. V. Bazrova ◽  
L.Z. Teltsova

Over the past fifteen years, Russian and foreign scientists have conducted a large amount of research in the development and use of composite materials based on epoxy resins, including the ways to restore structural integrity. In the oil and gas industry, composite materials are used for repair works.


2020 ◽  
pp. 57-68
Author(s):  
М.М. Manukyan

The article is devoted to the study of various areas for the improvement of ultraviscous oil technologies in the Samara region. Promising technologies, as well as technologies that have already been applied in the oil and gas industry of the Samara region were considered. New technologies in the oil and gas industry in the region were identified. The analysis of methods used for the development of heavy crude oil in a sessile plate - the thermal production method (THDP or SAGD), as well as the method of dynamic stimulation of the formation with wave energy - was carried out.


Sign in / Sign up

Export Citation Format

Share Document