Pilot-Scale Evaluation of Natural-Gas-Based Foam at High Pressures, Temperatures

2021 ◽  
Vol 73 (06) ◽  
pp. 60-61
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 201611, “A Pilot-Scale Evaluation of Natural-Gas-Based Foam at Elevated Pressure and Temperature Conditions,” by Griffin Beck, Swanand Bhagwat, and Carolyn Day, Southwest Research Institute, et al., prepared for the 2020 SPE Annual Technical Conference and Exhibition, originally scheduled to be held in Denver, 5–7 October. The paper has not been peer reviewed. The complete paper presents recent results from a rigorous pilot-scale demonstration of natural-gas (NG) foam over a range of operating scenarios relevant to surface and bottomhole conditions with a variety of base-fluid mixtures. The NG foams explored in these investigations exhibited typical shear-thinning behavior observed in rheological studies of nitrogen- (N2) and carbon-dioxide- (CO2) based foams. The measured viscosity and observed stability indicate that NG foams are well-suited for fracturing applications. Test Facilities Two test facilities were used to explore properties of NG foams at a variety of relevant operating conditions to determine whether NG foam is a suitable alternative to typical water-based fracturing fluids. Pilot-Scale Foam-Test Facility. The pilot-scale foam-test facility (PFTF) is a single-pass pilot plant used to generate and characterize foams at conditions relevant to surface and reservoir conditions. The facility is capable of generating aqueous and oil-based foams using a variety of gases for the internal phase [e.g., methane (CH4), N2, and CO2]. Foams can be characterized at pressures up to 7,500 psi and temperatures up to 300°F. A key benefit of the PFTF is that it can be used to demonstrate new or challenging foaming processes before large-scale or field demonstrations. Further, these processes can be evaluated at conditions relevant to the final application. The test facility consists of three subsystems: a base-fluid system to pressurize and heat the liquid/viscosifier/surfactant mixture, a gas system to pressurize and heat the liquefied gas stream, and the foam test sections to measure various fluid properties of the NG foam. Laboratory Foam-Test Facility. Tests performed on the PFTF were limited to foams generated with pure CH4 and tap water. Additional laboratory tests were conducted to investigate the effects of multiconstituent natural gas mixtures and produced water on foam stability. For these tests, the aqueous base fluid for the foam half-life and foam rheology experiments was prepared from either de-ionized water, tap water, or a synthetic produced water based on a water sample from the Permian Basin. Foam fracturing fluids also typically contain a gelling agent and a foaming agent. The gel was prepared by slow addition of guar to a stirred water sample followed by 30 minutes of mixing to ensure complete hydration. The foaming agent was added and stirred in gently. Three foaming agents were used in this study: anionic Foamer A, nonionic Foamer B, and zwitterionic Foamer C.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7645
Author(s):  
Shuang Zheng ◽  
Mukul M. Sharma

Stranded gas emission from the field production because of the limitations in the pipeline infrastructure has become one of the major contributors to the greenhouse effects. How to handle the stranded gas is a troublesome problem under the background of global “net-zero” emission efforts. On the other hand, the cost of water for hydraulic fracturing is high and water is not accessible in some areas. The idea of using stranded gas in replace of the water-based fracturing fluid can reduce the gas emission and the cost. This paper presents some novel numerical studies on the feasibility of using stranded natural gas as fracturing fluids. Differences in the fracture creating, proppant placement, and oil/gas/water flowback are compared between natural gas fracturing fluids and water-based fracturing fluids. A fully integrated equation of state compositional hydraulic fracturing and reservoir simulator is used in this paper. Public datasets for the Permian Basin rock and fluid properties and natural gas foam properties are collected to set up simulation cases. The reservoir hydrocarbon fluid and natural gas fracturing fluids phase behavior is modeled using the Peng-Robinson equation of state. The evolving of created fracture geometry, conductivity and flowback performance during the lifecycle of the well (injection, shut-in, and production) are analyzed for the gas and water fracturing fluids. Simulation results show that natural gas and foam fracturing fluids are better than water-based fracturing fluids in terms of lower breakdown pressure, lower water leakoff into the reservoir, and higher cluster efficiency. NG foams tend to create better propped fractures with shorter length and larger width, because of their high viscosity. NG foam is also found to create better stimulated rock volume (SRV) permeability, better fracturing fluid flowback with a large water usage reduction, and high natural gas consumption. The simulation results presented in this paper are helpful to the operators in reducing natural gas emission while reducing the cost of hydraulic fracturing operation.


2021 ◽  
Author(s):  
Mustafa Ahmed Alkhowaildi ◽  
Mohamed Mahmoud ◽  
Mohammed Abdullah Bataweel ◽  
Bassam Tawabini

Abstract Amid the rise in energy demand over recent years, natural gas from tight reservoirs has been targeted abundantly around the globe by different oil operators. Hydraulic fracturing technology has been instrumental in the successful exploitation of energy from tight formations. The process is associated with enormous usage of water. Hydraulic fracturing requires as little as 500,000 gallons of freshwater, and up to 6 million gallons per well depending on the type of well and the number of stages treated. Now operators, as well as service companies worldwide, have shown a desire to use produced water in field operations to enhance economics and reduce their environmental footprint. Reusing produced water in field operations appears to be a win-win proposition by transforming the industry's biggest waste product into a resource. This paper highlights the recent findings in published articles about formulating a fracturing fluid from produced water as a base fluid. The rheological properties and fluid performance requirements, such as proppant carrying capacity, mixing, fluid efficiency, ability to crosslink and break, and cleanup after treatment, will be evaluated in detail. This paper identified the critical parameters associated with high TDS fluids (produced water) such as pH, hydration time, ionic strength, and suspended solids, collected the corresponding optimal ranges for these parameters in laboratory tests, and reported some of the validity of the findings under actual conditions in field trials around the world. Most studies demonstrated the feasibility of using untreated produced water as a base fluid for crosslinked gel-based hydraulic fracturing. Through adjusting the hydration time, the gel loading, and the amount of breakers applied, it is conceivable that crosslinked gels with optimal rheological characteristics can be formulated with untreated produced water. Multiple generations of guar- and CMHPG-based crosslinked fracturing fluids, developed with 100% untreated produced water, exhibited optimal viscosities exceeding 200 cp at 40 s−1 for at least 60 minutes. The ability to provide fracturing fluids with high-salinity produced water can be a successful water conservation approach and an attractive solution for enhancing operation economics. Some studies indicated that using produced water can be better than freshwater because the produced water is more compatible with the reservoir and may be less likely to cause conditions such as salinity shock, which can damage the formation. More studies are needed to understand the associated technical challenges further.


2020 ◽  
Author(s):  
Griffin Beck ◽  
Swanand Bhagwat ◽  
Carolyn Day ◽  
Emilio Gordon ◽  
Chris Daeffler ◽  
...  

2017 ◽  
Vol 2017 (1) ◽  
pp. 119-138
Author(s):  
Blair Wisdom ◽  
Brad Van Anderson ◽  
Isaac Avila ◽  
Troy Gottschalk ◽  
Kurt Carson ◽  
...  
Keyword(s):  

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 105
Author(s):  
Tae Young Kim ◽  
Seong Bin Jo ◽  
Jin Hyeok Woo ◽  
Jong Heon Lee ◽  
Ragupathy Dhanusuraman ◽  
...  

Co–Fe–Al catalysts prepared using coprecipitation at laboratory scale were investigated and extended to pilot scale for high-calorific synthetic natural gas. The Co–Fe–Al catalysts with different metal loadings were analyzed using BET, XRD, H2-TPR, and FT-IR. An increase in the metal loading of the Co–Fe–Al catalysts showed low spinel phase ratio, leading to an improvement in reducibility. Among the catalysts, 40CFAl catalyst prepared at laboratory scale afforded the highest C2–C4 hydrocarbon time yield, and this catalyst was successfully reproduced at the pilot scale. The pelletized catalyst prepared at pilot scale showed high CO conversion (87.6%), high light hydrocarbon selectivity (CH4 59.3% and C2–C4 18.8%), and low byproduct amounts (C5+: 4.1% and CO2: 17.8%) under optimum conditions (space velocity: 4000 mL/g/h, 350 °C, and 20 bar).


Energy ◽  
2021 ◽  
Vol 223 ◽  
pp. 120021
Author(s):  
Donghee Kim ◽  
Won Yang ◽  
Kang Y. Huh ◽  
Youngjae Lee

Sign in / Sign up

Export Citation Format

Share Document