Real-time Transmission of High Resolution Images

Author(s):  
Oleg Nicolaevitch Akimov ◽  
Ansgar Baule ◽  
Jens Bethge ◽  
Thorsten Roessel ◽  
Richard Tilsley-Baker
Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


2014 ◽  
Vol 13 (4) ◽  
pp. 685-702 ◽  
Author(s):  
Dana Forsthoefel Fitzgerald ◽  
D. Scott Wills ◽  
Linda M. Wills

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3591 ◽  
Author(s):  
Haidi Zhu ◽  
Haoran Wei ◽  
Baoqing Li ◽  
Xiaobing Yuan ◽  
Nasser Kehtarnavaz

This paper addresses real-time moving object detection with high accuracy in high-resolution video frames. A previously developed framework for moving object detection is modified to enable real-time processing of high-resolution images. First, a computationally efficient method is employed, which detects moving regions on a resized image while maintaining moving regions on the original image with mapping coordinates. Second, a light backbone deep neural network in place of a more complex one is utilized. Third, the focal loss function is employed to alleviate the imbalance between positive and negative samples. The results of the extensive experimentations conducted indicate that the modified framework developed in this paper achieves a processing rate of 21 frames per second with 86.15% accuracy on the dataset SimitMovingDataset, which contains high-resolution images of the size 1920 × 1080.


Author(s):  
Hengshuang Zhao ◽  
Xiaojuan Qi ◽  
Xiaoyong Shen ◽  
Jianping Shi ◽  
Jiaya Jia

Sign in / Sign up

Export Citation Format

Share Document