Effect of Wettability on High-Velocity Coefficient in Two-Phase Gas/Liquid Flow

SPE Journal ◽  
2008 ◽  
Vol 13 (03) ◽  
pp. 298-304 ◽  
Author(s):  
Myeong H. Noh ◽  
Abbas Firoozabadi

Summary Gas-well productivity is affected by two distinct mechanisms: liquid blocking and high-velocity flow in two-phase flow. The former has been studied extensively recently, but the understanding of the latter is limited. High-velocity gas flow in single phase has been studied thoroughly by a large number of authors. Despite the fact that high-velocity coefficient in the presence of an immobile and a mobile liquid phase is much higher than that in single phase, only a handful of studies have been made on the subject. In this work, we have measured the high-velocity coefficient, ß in steady-state two-phase gas/liquid flow. The results are presented as a function of liquid relative permeability and liquid saturation. In our measurements, the wetting state is varied by the treatment with a fluorochemical compound. Then, the effect of wettability on the high-velocity coefficient in two-phase flow is investigated. Results show that when the liquid is strongly wetting, the high-velocity coefficient increases approximately 270-fold in water/gas two-phase flow. However, our data show a systematic reduction of high-velocity coefficients for the altered wetting state in two-phase flow. We present measurements of the velocity coefficients in single-phase flow and two-phase flow, for both oil/gas and water/gas flow and strong liquid-wetting and altered-wetting states. On the basis of our measurements, we conclude that the treatment of the wellbore region can result in significant improvement in well deliverability from the large reduction of high-velocity coefficients. Introduction Gas deliverability in gas-condensate reservoirs can be significantly affected by liquid blocking, either from condensate accumulation or water blocking, and high-velocity flows in the near-wellbore. Hydrocarbon blocking in gas-condensate reservoirs results in a significant loss of well productivity; water blocking from hydraulic-fracturing operation often limits the advantage of fractures. In addition to liquid blocking, the increased pressure drop, caused by inertial effects at high gas velocity in both low-permeability and hydraulically fractured reservoirs, can also result in low productivity. The focus of this work is on the high-velocity gas flow in two-phase gas/liquid flow in gas reservoirs. Darcy's law is inadequate to describe high-velocity gas flow in porous media. Through the high-velocity coefficient, ß, Darcy's law is modified, and the additional pressure drop from high-velocity flow can be expressed as the Forchheimer equation (1901). The general understanding is that the high-velocity coefficient in two-phase flow is higher than in single-phase gas flow in a dry rock. However, very few attempts have been made for conclusive experiments in determining the high-velocity coefficient in two-phase gas/liquid flow because of experimental difficulties in maintaining a constant liquid saturation for different pressure drops. Gas flow at low velocity is governed by Darcy's law, which describes a linear relationship between pressure gradient and volumetric flux. At high gas velocity, the pressure gradient required to maintain a certain flow rate through porous media is higher than that predicted by Darcy's law. The effect of inertia has to be added. The result is the Forchheimer equation expressed by[Equation 1] where µg is gas viscosity, kg is the effective gas permeability, ug is the gas volumetric flux, ß is a high-velocity coefficient, and ??g is gas density. Eq. 1 is valid both for single-phase gas flow and for two-phase gas/liquid flow provided, that the capillary effect is negligible. In 1D, one may integrate Eq. 1 to obtain [Equation 2] Here, p1 and p2 are the inlet and outlet pressure; M and jg are molecular weight and mass flux of gas, respectively; R and Z are the gas constant and the gas deviation factor, respectively; T is temperature; and L is the length. Effective gas permeability and high-velocity coefficient are determined by plotting M?p2 / 2µgZRTLjg vs. jg / µg, provided that the saturation is constant. Fig. 1 shows a schematic of determining the effective gas permeability and the high-velocity coefficient. Note that the effective permeability in Eq. 2 becomes the absolute permeability when the rock is dry (Sg = 100%, krg = 1.0). There has been much work in the literature on high gas velocity in single-phase flow in dry rocks. There has also been a fair amount of work in single-phase gas flow with immobile liquid saturation. Very little work, however, has been done in two-phase gas/liquid flow at high gas velocity. In the following, we will briefly review the literature in experimental studies and set the stage for our work in two-phase gas/liquid flow at high gas velocity.

2011 ◽  
Vol 383-390 ◽  
pp. 4922-4927
Author(s):  
Peng Xia Xu ◽  
Yan Feng Geng

Wet gas flow is a typical two-phase flow with low liquid fractions. As differential pressure signal contains rich information of flow parameters in two-phase flow metering, a new method is proposed for wet gas flow metering based on differential pressure (DP) and blind source separation (BSS) techniques. DP signals are from a couple of slotted orifices and the BSS method is based on time-frequency analysis. A good relationship between the liquid flow rate and the characteristic quantity of the separated signal is established, and a differential pressure correlation for slotted orifice is applied to calculate the gas flow rate. The calculation results are good with 90% relative errors less than ±10%. The results also show that BSS is an effective method to extract liquid flow rate from DP signals of wet gas flow, and to analysis different interactions among the total DP readings.


2019 ◽  
Vol 19 (2) ◽  
pp. 123-131
Author(s):  
O. P. Klenov ◽  
A. S. Noskov

The work was aimed at studying the behavior of the two-phase gas-liquid flow at the inlet pipe of a catalytic reactor. Apart from the classical approach using literature flow diagrams, methods of computational hydrodynamics were used for 3D simulation of the space propagation of phases in the pipeline. The results obtained demonstrated non-uniform distribution of the liquid phase through the outlet section of the pipeline and the time-unsteady mass consumption of the liquid phase. The maximal peak consumptions were ca. 3 times as high as the average values. With the data on the flow diagrams, the CFD simulation demonstrated that variations in the gas consumption within the range under study do not cause changes in the behavior of the two-phase flow but an increase in the gas consumption results in smoothening of the non-uniform distribution of the liquid phase at the outlet pipe. The data on the flow behavior are necessary for designing catalytic reactors to provide uniform propagation of the two-phase flow over the catalyst bed, for example, hydrotreatment reactors used in refineries.


1998 ◽  
Vol 120 (1) ◽  
pp. 41-48 ◽  
Author(s):  
G. Lackner ◽  
F. J. S. Alhanati ◽  
S. A. Shirazi ◽  
D. R. Doty ◽  
Z. Schmidt

The presence of free gas at the pump intake adversely affects the performance of an electrical submersible pump (ESP) system, often resulting in low efficiency and causing operational problems. One method of reducing the amount of free gas that the pump has to process is to install a rotary gas separator. The gas-liquid flow associated with the down hole installation of a rotary separator has been investigated to address its overall phase segregation performance. A mathematical model was developed to investigate factors contributing to gas-liquid separation and to determine the efficiency of the separator. The drift-flux approach was used to formulate this complex two-phase flow problem. The turbulent diffusivity was modeled by a two-layer mixing-length model and the relative velocity between phases was formulated based on published correlations for flows with similar characteristics. The well-known numerical procedure of Patankar-Spalding for single-phase flow computations was extended to this two-phase flow situation. Special discretization techniques were developed to obtain consistent results. Special under relaxation procedures were also developed to keep the gas void fraction in the interval [0, 1]. Predicted mixture velocity vectors and gas void fraction distribution for the two-phase flow inside the centrifuge are presented. The model’s predictions are compared to data gathered on a field scale experimental facility to support its invaluable capabilities as a design tool for ESP installations.


Author(s):  
Hao Feng ◽  
Xun Zhu ◽  
Rong Chen ◽  
Qiang Liao

In this study, visualization study on the gas-liquid two phase flow characteristics in a gas-liquid-solid microchannel reactor was carried out. Palladium nanocatalyst was coated onto the polydopamine functionalized surface of the microchannel through eletroless deposition. The materials characterization results indicated that palladium nanocatalyst were well dispersed on the modified surface. The effects of both the gas and liquid flow rates as well as inlet nitrobenzene concentration on the two-phase flow characteristics were studied. The experimental results revealed that owing to the chemical reaction inside the microreactor, the gas slug length gradually decreased along the flow direction. For a given inlet nitrobenzene concentration, increasing the liquid flow rate or decreasing the gas flow rate would make the variation of the gas slug length more obvious. High inlet nitrobenzene concentration would intensify both the nitrobenzene transfer efficiency and gas reactants consumption, and thereby the flow pattern in the microchannel was transferred from Taylor flow into bubble flow. Besides, the effect of both flow rate and original nitrobenzene concentration on the variation of nitrobenzene conversion and the desired product aniline yield were also discussed.


Volume 3 ◽  
2004 ◽  
Author(s):  
Bing Wang ◽  
Hui-Qiang Zhang ◽  
Xi-Lin Wang

Solid particle response to local gas velocity was discussed based on the simulation results of instantaneous velocities of three-dimensional backward-facing step gas particle turbulent flow. Gas flow was simulated by the method of large eddy simulation and particle motion was calculated by the Lagrangian particle tracking model. Instantaneous particle response to gas velocity in two different typical flow regions was discussed. Some factors, such as the waveform similarity function and time-averaged method were used for quantitatively studying particle response regularity based on the relationship between the gas velocity and particle velocity for different size particles. It is shown that the smaller the particle is, the smaller the waveform similarity function value is. The extent that particle velocities make response to gas flow velocities in different flow regions is also distinct. Moreover, for time-averaged results, the quantitative results that particle velocities depend on gas velocities are obviously different in the main flow region. These studies also provide some reference for researches of improving particle stochastic separated flow models for turbulent two-phase flow and for studies of two-way coupling problem for two-phase flow.


Sign in / Sign up

Export Citation Format

Share Document