Guest Editorial: Unconventional Development Approaches Health Check, and Where We Have To Go

2021 ◽  
Vol 73 (11) ◽  
pp. 10-11
Author(s):  
Martin Rylance

The direction of unconventional developments has been a roller-coaster ride, not only in the realms of financing and profitability, but very much in the technical execution of the well construction and the completion phases, too. This is particularly the case for those aspects relating to the completion and hydraulic fracturing operations. There are few parties, I believe, that would disagree that the drilling com-munity rapidly delivered an extremely coherent and efficient learning curve, something that the completion/fracturing discipline has unfortunately been much slower to achieve. This is not in the least surprising. Effectively extending conventional technologies and focusing on key requirements (i.e., getting from point A to point B) worked well for drilling teams. In a commendable and efficient manner, they were able to readily deploy and incrementally learn in an almost linear fashion. This achieved remarkable delivery records across all unconventional plays. Completions however, namely hydraulic fracturing, has been a very different journey and involves solving a very different problem, one with many more variables, inherent complexities, and multiple degrees of freedom. With each unconventional play potentially being distinct (just as with drilling), these differences can, however, extend to impactful areal trends and features within the plays, as well as subtle variations along individual lateral wellbores. For example, unlike drilling, the form (and even sequence) of an offset wellbore completion can easily affect the completion operations in the current wellbore. It is quite likely that much of the initial misdirection of energy and effort resulted from an overenthusiastic application of conventional planar fracturing technology and knowledge to the unconventional environment. Perhaps the initial lack of effective diagnostic tools and approaches played a role, something that appears to have been understandably addressed in recent years. However, there was also a likely inherent engineering bias in the industry’s fracturing staff engineers. The bulk of the industry engineers had entered unconventionals off at least 2 decades of well understood, well defined, and highly effective physics-based analysis of conventional planar fracturing operations. Indeed, in some areas this fallacy continues. For example, proppant selection is ostensibly performed based on long-established criterion set in place in the 1970s and 1980s, and wholly appropriate to planar fracturing. Whereas the reality is that proppant plays multiple very different roles in unconventionals, bridging, plugging, wedging, diverting, etc. This has led to a “tearing up of the rule book” situation within the sector (that is ongoing) as poorer-quality sands and micro-/nanoproppants find applicability, as well as quality ceramics for a strategic place in the fracture. Yet, you may ask any frac engineer to select proppant for unconventionals and they will almost immediately request data on performance at 2 lb/ft2, as though we are flowing through proppant packs across the entire created geometry. This significantly enhanced level of complexity has led to a general failure of the linear model in terms of effectiveness in progressing optimum completion solutions. As a result, the early years of unconventional completion learning were largely “lost” in this linear way.

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


2021 ◽  
pp. 027836492110218
Author(s):  
Sinan O. Demir ◽  
Utku Culha ◽  
Alp C. Karacakol ◽  
Abdon Pena-Francesch ◽  
Sebastian Trimpe ◽  
...  

Untethered small-scale soft robots have promising applications in minimally invasive surgery, targeted drug delivery, and bioengineering applications as they can directly and non-invasively access confined and hard-to-reach spaces in the human body. For such potential biomedical applications, the adaptivity of the robot control is essential to ensure the continuity of the operations, as task environment conditions show dynamic variations that can alter the robot’s motion and task performance. The applicability of the conventional modeling and control methods is further limited for soft robots at the small-scale owing to their kinematics with virtually infinite degrees of freedom, inherent stochastic variability during fabrication, and changing dynamics during real-world interactions. To address the controller adaptation challenge to dynamically changing task environments, we propose using a probabilistic learning approach for a millimeter-scale magnetic walking soft robot using Bayesian optimization (BO) and Gaussian processes (GPs). Our approach provides a data-efficient learning scheme by finding the gait controller parameters while optimizing the stride length of the walking soft millirobot using a small number of physical experiments. To demonstrate the controller adaptation, we test the walking gait of the robot in task environments with different surface adhesion and roughness, and medium viscosity, which aims to represent the possible conditions for future robotic tasks inside the human body. We further utilize the transfer of the learned GP parameters among different task spaces and robots and compare their efficacy on the improvement of data-efficient controller learning.


Author(s):  
Zening Lin ◽  
Tao Jiang ◽  
Jianzhong Shang

Abstract In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored. Graphic abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Randy Lemons ◽  
Wei Liu ◽  
Josef C. Frisch ◽  
Alan Fry ◽  
Joseph Robinson ◽  
...  

AbstractThe structural versatility of light underpins an outstanding collection of optical phenomena where both geometrical and topological states of light can dictate how matter will respond or display. Light possesses multiple degrees of freedom such as amplitude, and linear, spin angular, and orbital angular momenta, but the ability to adaptively engineer the spatio-temporal distribution of all these characteristics is primarily curtailed by technologies used to impose any desired structure to light. We demonstrate a laser architecture based on coherent beam combination offering integrated spatio-temporal field control and programmability, thereby presenting unique opportunities for generating light by design to exploit its topology.


AIP Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 075306
Author(s):  
Ruikun Niu ◽  
Yu Guo

Author(s):  
D. L. Russell ◽  
M. McTavish

The various relationships that are possible between the mechanical properties of single actuators and the overall mechanism (in this case a human arm with or without a prosthetic elbow) are discussed. Graphical and analytical techniques for describing the range of overall limb stiffnesses that are achievable and for characterizing the overall limb stiffness have been developed. Using a biomimetic approach and, considering energetic costs, stability and complexity, the implications of choosing passive or active implementations of stiffness are discussed. These techniques and approaches are particularly applicable with redundant (agonist - antagonist) actuators and multiple degrees of freedom. Finally, a novel biomimetic approach for control is proposed.


Author(s):  
SD Yu ◽  
BC Wen

This article presents a simple procedure for predicting time-domain vibrational behaviors of a multiple degrees of freedom mechanical system with dry friction. The system equations of motion are discretized by means of the implicit Bozzak–Newmark integration scheme. At each time step, the discontinuous frictional force problem involving both the equality and inequality constraints is successfully reduced to a quadratic mathematical problem or the linear complementary problem with the introduction of non-negative and complementary variable pairs (supremum velocities and slack forces). The so-obtained complementary equations in the complementary pairs can be solved efficiently using the Lemke algorithm. Results for several single degree of freedom and multiple degrees of freedom problems with one-dimensional frictional constraints and the classical Coulomb frictional model are obtained using the proposed procedure and compared with those obtained using other approaches. The proposed procedure is found to be accurate, efficient, and robust in solving non-smooth vibration problems of multiple degrees of freedom systems with dry friction. The proposed procedure can also be applied to systems with two-dimensional frictional constraints and more sophisticated frictional models.


Author(s):  
Hong-Sen Yan ◽  
Meng-Hui Hsu

Abstract An analytical method is presented for locating all velocity instantaneous centers of linkage mechanisms with single or multiple degrees of freedom. The method is based on the fact that the coefficient matrix of the derived velocity equations for vector loops, independent inputs, and instantaneous centers is singular. This approach also works for special cases with kinematic indeterminacy or singular configurations.


Sign in / Sign up

Export Citation Format

Share Document