scholarly journals The emerging technology of biohybrid micro-robots: a review

Author(s):  
Zening Lin ◽  
Tao Jiang ◽  
Jianzhong Shang

Abstract In the past few decades, robotics research has witnessed an increasingly high interest in miniaturized, intelligent, and integrated robots. The imperative component of a robot is the actuator that determines its performance. Although traditional rigid drives such as motors and gas engines have shown great prevalence in most macroscale circumstances, the reduction of these drives to the millimeter or even lower scale results in a significant increase in manufacturing difficulty accompanied by a remarkable performance decline. Biohybrid robots driven by living cells can be a potential solution to overcome these drawbacks by benefiting from the intrinsic microscale self-assembly of living tissues and high energy efficiency, which, among other unprecedented properties, also feature flexibility, self-repair, and even multiple degrees of freedom. This paper systematically reviews the development of biohybrid robots. First, the development of biological flexible drivers is introduced while emphasizing on their advantages over traditional drivers. Second, up-to-date works regarding biohybrid robots are reviewed in detail from three aspects: biological driving sources, actuator materials, and structures with associated control methodologies. Finally, the potential future applications and major challenges of biohybrid robots are explored. Graphic abstract

2021 ◽  
Author(s):  
Shiyi Zhang ◽  
Joseph Wang ◽  
Kenshi Hayashi ◽  
Fumihiro Sassa

Abstract Low-invasive soft robotic techniques can potentially be used for developing next-generation body–machine interfaces. Most soft robots require complicated fabrication processes involving 3D printing and bonding/assembling. In this letter, we describe a monolithic soft microrobot fabrication process for the mass production of soft film robots with a complex structure by simple 2D processing of a robotic actuator film. The 45 μg/mm^2 lightweight film robot can be driven at a voltage of CMOS compatible 5 V with 0.15 mm^-1 large curvature changes; it can generate a force 5.7 times greater than its self-weight. In a durability test, actuation could be carried out over 8000 times without degradation. To further demonstrate this technique, three types of film robots with multiple degrees of freedom and moving illuminator robot were fabricated. This technique can easily integrate various electrical circuits developed in the past to robotic systems and can be used for developing advanced wearable sensing devices; It can be called “Kinetic electronics.”


Robotica ◽  
2001 ◽  
Vol 19 (3) ◽  
pp. 275-284 ◽  
Author(s):  
M. Wisse ◽  
A. L. Schwab ◽  
R. Q. vd. Linde

Autonomous walking bipedal machines, possibly useful for rehabilitation and entertainment purposes, need a high energy efficiency, offered by the concept of ‘Passive Dynamic Walking' (exploitation of the natural dynamics of the robot). 2D passive dynamic bipeds have been shown to be inherently stable, but in the third dimension two problematic degrees of freedom are introduced: yaw and roll.We propose a design for a 3D biped with a pelvic body as a passive dynamic compensator, which will compensate for the undesired yaw and roll motion, and allow the rest of the robot to move as if it were a 2D machine. To test our design, we perform numerical simulations on a multibody model of the robot. With limit cycle analysis we calculate the stability of the robot when walking at its natural speed.The simulation shows that the compensator, indeed, effectively compensates for both the yaw and the roll motion, and that the walker is stable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shiyi Zhang ◽  
Joseph Wang ◽  
Kenshi Hayashi ◽  
Fumihiro Sassa

AbstractLow-invasive soft robotic techniques can potentially be used for developing next-generation body–machine interfaces. Most soft robots require complicated fabrication processes involving 3D printing and bonding/assembling. In this letter, we describe a monolithic soft microrobot fabrication process for the mass production of soft film robots with a complex structure by simple 2D processing of a robotic actuator film. The 45 µg/mm2 lightweight film robot can be driven at a voltage of CMOS compatible 5 V with 0.15 mm−1 large curvature changes; it can generate a force 5.7 times greater than its self-weight. In a durability test, actuation could be carried out over 8000 times without degradation. To further demonstrate this technique, three types of film robots with multiple degrees of freedom and a moving illuminator robot were fabricated. This technique can easily integrate various electrical circuits developed in the past to robotic systems and can be used for developing advanced wearable sensing devices; it can be called “Kinetic electronics”.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


2019 ◽  
Vol 26 (8) ◽  
pp. 1351-1365 ◽  
Author(s):  
Zhentao Huang ◽  
Qingxin Yao ◽  
Simin Wei ◽  
Jiali Chen ◽  
Yuan Gao

Precision medicine is in an urgent need for public healthcare. Among the past several decades, the flourishing development in nanotechnology significantly advances the realization of precision nanomedicine. Comparing to well-documented nanoparticlebased strategy, in this review, we focus on the strategy using enzyme instructed selfassembly (EISA) in biological milieu for theranostics purpose. In principle, the design of small molecules for EISA requires two aspects: (1) the substrate of enzyme of interest; and (2) self-assembly potency after enzymatic conversion. This strategy has shown its irreplaceable advantages in nanomedicne, specifically for cancer treatments and Vaccine Adjuvants. Interestingly, all the reported examples rely on only one kind of enzymehydrolase. Therefore, we envision that the application of EISA strategy just begins and will lead to a new paradigm in nanomedicine.


Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Randy Lemons ◽  
Wei Liu ◽  
Josef C. Frisch ◽  
Alan Fry ◽  
Joseph Robinson ◽  
...  

AbstractThe structural versatility of light underpins an outstanding collection of optical phenomena where both geometrical and topological states of light can dictate how matter will respond or display. Light possesses multiple degrees of freedom such as amplitude, and linear, spin angular, and orbital angular momenta, but the ability to adaptively engineer the spatio-temporal distribution of all these characteristics is primarily curtailed by technologies used to impose any desired structure to light. We demonstrate a laser architecture based on coherent beam combination offering integrated spatio-temporal field control and programmability, thereby presenting unique opportunities for generating light by design to exploit its topology.


AIP Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 075306
Author(s):  
Ruikun Niu ◽  
Yu Guo

Sign in / Sign up

Export Citation Format

Share Document