Unsteady-State Spherical Flow With Storage and Skin

1985 ◽  
Vol 25 (06) ◽  
pp. 804-822 ◽  
Author(s):  
Jeffrey A. Joseph ◽  
Leonard F. Koederitz

Abstract This paper presents short-time interpretation methods for radial-spherical (or radial-hemispherical) flow in homogeneous and isotropic reservoirs inclusive of wellbore storage, wellbore phase redistribution, and damage skin effects. New dimensionless groups are introduced to facilitate the classic transformation from radial flow in the sphere to linear flow in the rod. Analytical expressions, type curves (in log-log and semilog format), and tabulated solutions are presented, both in terms of pressure and rate, for all flow problems considered. A new empirical equation to estimate the duration of wellbore and near-wellbore effects under spherical flow is also proposed. Introduction The majority of the reported research on unsteady-state flow theory applicable to well testing usually assumes a cylindrical (typically a radial-cylindrical) flow profile because this condition is valid for many test situations. Certain well tests, however, are better modeled by assuming a spherical flow symmetry (e.g., wireline formation testing, vertical interference testing, and perhaps even some tests conducted in wellbores that do not fully penetrate the productive horizon or are selectively penetrate the productive horizon or are selectively completed). Plugged perforations or blockage of a large part of an openhole interval may also promote spherical flow. Numerous solutions are available in the literature for almost every conceivable cylindrical flow problem; unfortunately, the companion spherical problem has not received as much attention, and comparatively few papers have been published on this topic. papers have been published on this topic. The most common inner boundary condition in well test analysis is that of a constant production rate. But with the advent of downhole tools capable of the simultaneous measurement of pressures and flow rates, this idealized inner boundary condition has been refined and more sophisticated models have been proposed. Therefore, similar methods must be developed for spherical flow analysis, especially for short-time interpretations. This general problem has recently been addressed elsewhere. Theory The fundamental linear partial differential equation (PDE) describing fluid flow in an infinite medium characterized by a radial-spherical symmetry is (1) The assumptions incorporated into this diffusion equation are similar to those imposed on the radial-cylindrical diffusivity equation and are discussed at length in Ref. 9. In solving Eq. 1, the classic approach is illustrated by Carslaw and Jaeger (later used by Chatas, and Brigham et al.). According to Carslaw and Jaeger, mapping b=pr will always reduce the problem of radial flow in the sphere (Eq. 1) to an equivalent problem of linear flow in the rod for which general solutions are usually known. (For example, see Ref. 17 for particular solutions in petroleum applications.) Note that in this study, we assumed that the medium is spherically isotropic; hence k in Eq. 1 is the constant spherical permeability. This assumption, however, does not preclude analysis in systems possessing simple anisotropy (i.e., uniform but unequal horizontal and vertical permeability components). In this case, k as used in this paper should be replaced by k, an equivalent or average (but constant) spherical permeability. Chatas presented a suitable expression (his Eq. 10) obtained presented a suitable expression (his Eq. 10) obtained from a volume integral. It is desirable to transform Eq. 1 to a nondimensional form, thereby rendering its applicability universal. The following new, dimensionless groups accomplish this and have the added feature that solutions are obtained directly in terms of the dimensionless pressure drop, PD, not the usual b (or bD) groups. ......................(2) .......................(3) .........................(4) The quantity rsw is an equivalent or pseudospherical wellbore radius used to represent the actual cylindrical sink (or source) of radius rw. SPEJ p. 804

2001 ◽  
Vol 4 (03) ◽  
pp. 221-230 ◽  
Author(s):  
D.D. Charles ◽  
H.H. Rieke ◽  
R. Purushothaman

Summary Two offshore, wedge-shaped reservoirs in south Louisiana were interpreted with pressure-buildup responses by comparing the results from simulated finite-element model studies. The importance of knowing the correct reservoir shape, and how it is used to interpret the generated boundary-pressure responses, is briefly discussed. Two different 3D computer models incorporating different wedge-shaped geometries simulated the test pressure-buildup response patterns. Variations in the two configurations are topologically expressed as a constant thickness and a nonconstant thickness, with smooth-surface, wedged-shaped reservoir models. The variable-thickness models are pinched-out updip at one end and faulted at the other end. Numerical well-test results demonstrated changes in the relationships between the pressure-derivative profile, the wellbore location, and the extent of partial penetration in the reservoir models. The wells were placed along the perpendicular bisector (top view) at distances starting from the apex at 5, 10, 20, 40, 50, 60, 80, and 90% of the reservoir length. Results demonstrate that boundary distance identification (such as distance, number, and type) based solely on the log-log derivative profile in rectangular and triangular wedge-shaped reservoirs should be strongly discouraged. Partial-penetration effects (PPE's) in wedge-shaped reservoirs are highly dependent on the wellbore location relative to the wedge, and the well-test-data analysis becomes more complex. Introduction The interpretation of the effect of reservoir shape on pressure-transient well-test data needs improvement. It is economically imperative to be able to generate an accurate estimate of reserves and producing potential. This is especially critical for independent operators who wish to participate in deepwater opportunities in the Gulf of Mexico. Proper interpretation of data extracted from cost-effective well tests is an integral part of describing, evaluating, and managing such reservoirs. Well-test information such as average reservoir pressure, transmissivity, pore volume, storativity, formation damage, deliverability, distance to the boundary, and completion efficiency are some of the technical inputs into economic and operational decisions. Several key economic decisions that operators have to make are:Should the reservoir be exploited?How many wells are needed to develop the reservoir?Is artificial lift necessary (and if so, when)? The identification of morphological demarcation components such as impermeable barriers (faults, intersecting faults, facies changes, erosional unconformities, and structural generated depositional pinchouts) and constant-pressure boundaries (aquifer or gas-cap) from well testing help to establish the reservoir boundaries, shape, and volume. One must remember that the geological entrapment structure or sedimentological body does not always define the reservoir's limits. Our present study provides insight into wedge-shaped reservoirs in the Gulf of Mexico. Seismic exploration can define geological shapes in either two or three dimensions in the subsurface. These shapes are expressions of the preserved structural history and depositional environments and are verified by observations of such structures in outcrops and present-day depositional environments. From a sedimentological viewpoint, the following sedimentary deposits can exhibit wedge-shaped geometries. Preserved barchan sand dunes, reworked transgressive sands, barrier-island sands, offshore bars, alluvial fan deposits, delta-front sheet sands, and lenticular channel sands form the more plausible pinchout, wedge-shaped geological models recognized in the Gulf of Mexico sedimentary sequence. Wedge-Shaped Reservoirs Reviewing the petroleum engineering literature, we found very few technical papers addressing wedge-shaped reservoir geometries and their effects on reservoir performance. Their detailed analytical results are discussed and applied to the interpretations of our model results. An overview of the conceptual models is presented as a quick orientation to emphasize some model issues. Horne and Temeng1 were the first to address the problem of recognizing, discriminating, and locating reservoir pinchouts with the Green's functions method proposed by Gringarten and Ramey2 in pressure-transient analysis. The analytical solution considered a dimensionless penetration depth of the well. Their results showed that pinchout boundaries appear similar to constant-pressure boundaries with respect to pressure-drawdown behavior and not as a perpendicular sealing boundary. Yaxley3 presented a set of simple equations for calculating the stabilized inflow performance of a well in infinite rectangular and wedge-shaped drainage systems. The basis for Yaxley's mathematical model is the application of transient linear flow (as opposed to radial flow conditions assumed for the reservoir) and the mathematical difference between a plane source and a line source in linear-flow drainage systems for various rectangular drainage shapes. The equations were derived from transient linear-flow relationships for a well located between parallel no-flow boundaries. This concept was applied to intersecting no-flow boundaries and an outer circular, no-flow, constant-pressure boundary. His approach involved a constant ßr that is interpreted as an extra pressure drop relative to a well of radius ro (radial distance to the well location), which is a result of the distortion of the radial streamline pattern. Chen and Raghavan4 developed a solution to compute pressure distributions in wedge-shaped drainage systems using Laplace transforms. Their mathematical approach overcame existing limitations in some of the previous solutions, which were mentioned earlier. By applying the inversion theorem to the Laplace transformation, they verified that the slope of the pressure profile is inversely proportional to the wedge angle of the drainage system. An examination of their results is important to the interpretation of our own simulated pressure-response issues. Generally, their model solutions showed three radial-flow periods in the absence of wellbore-storage effects. The radial-flow periods showed that:During an initial radial-flow period, neither of the impermeable boundaries registered either singly or jointly.In the second phase, one or two boundaries became evident on the pressure signature.A third radial-flow period exhibited a semi logarithmic slope proportional to p/?o, where ?o=the angle of the wedge.


2022 ◽  
Vol 12 (2) ◽  
pp. 817
Author(s):  
Jang Hyun Lee ◽  
Juhairi Aris Bin Muhamad Shuhili

Pressure transient analysis for a vertically hydraulically fractured well is evaluated using two different equations, which cater for linear flow at the early stage and radial flow in the later stage. However, there are three different stages that take place for an analysis of pressure transient, namely linear, transition and pseudo-radial flow. The transition flow regime is usually studied by numerical, inclusive methods or approximated analytically, for which no specific equation has been built, using the linear and radial equations. Neither of the approaches are fully analytical. The numerical, inclusive approach results in separate calculations for the different flow regimes because the equation cannot cater for all of the regimes, while the analytical approach results in a difficult inversion process to compute well test-derived properties such as permeability. There are two types of flow patterns in the fracture, which are uniform and non-uniform, called infinite conductivity in a high conductivity fracture. The study was conducted by utilizing an analogous study of linear flow equations. Instead of using the conventional error function, the exponential integral with an infinite number of wells was used. The results obtained from the developed analytical solution matched the numerical results, which proved that the equation was representative of the case. In conclusion, the generated analytical equation can be directly used as a substitute for current methods of analyzing uniform flow in a hydraulically fractured well.


2021 ◽  
Vol 134 (3) ◽  
pp. 35-38
Author(s):  
A. M. Svalov ◽  

Horner’s traditional method of processing well test data can be improved by a special transformation of the pressure curves, which reduces the time the converted curves reach the asymptotic regimes necessary for processing these data. In this case, to take into account the action of the «skin factor» and the effect of the wellbore, it is necessary to use a more complete asymptotic expansion of the exact solution of the conductivity equation at large values of time. At the same time, this method does not allow to completely eliminate the influence of the wellbore, since the used asymptotic expansion of the solution for small values of time is limited by the existence of a singular point, in the vicinity of which the asymptotic expansion ceases to be valid. To solve this problem, a new method of processing well test data is proposed, which allows completely eliminating the influence of the wellbore. The method is based on the introduction of a modified inflow function to the well, which includes a component of the boundary condition corresponding to the influence of the wellbore.


1972 ◽  
Author(s):  
Alain C. Gringarten ◽  
Henry J. Ramey ◽  
R. Raghavan

INTRODUCTION During the last few years, there has been an explosion of information in the field of well test analysis. Because of increased physical understanding of transient fluid flow, the entire pressure history of a well test can be analyzed, not just long-time data as in conventional analysis.! It is now often possible to specify the time of beginning of the correct semilog straight line and determine whether the correct straight line has been properly identified. It is also possible to identify wellbore storage effects and the nature of wellbore stimulation as to permeability improvement, or fracturing, and perform quantitative analyses of these effects. These benefits were brought about in the main by attempts to understand the short-time pressure data from well testing, data which were often classified as too complex for analysis. One recent study of short-time pressure behavior2 showed that it was important to specify the physical nature of the stimulation in consideration of stimulated well behavior. That is, statement of the van Everdingen-Hurst infinitesimal skin effect as negative was not sufficient to define short-time well behavior. For instance, acidized {but not acid fraced) and hydraulically fractured wells did not necessarily have the same behavior at early times, even though they might possess the same value of negative skin effect.


2013 ◽  
Vol 53 (1) ◽  
pp. 227
Author(s):  
Czek Hoong Tan ◽  
Guncel Demircan ◽  
Mathias Satyagraha

Permeability of the cleat system is a key factor controlling the productivity of CSG reservoirs and, therefore, the commerciality of development projects. Well testing is routinely used to provide representative values of coal permeability. The authors’ experience has shown pressure transient behaviour in coal reservoirs to be similar to those in primary porosity systems, with pseudo radial flow frequently observed, and the dual-porosity signature largely absent. Despite the authors’ best efforts in test design, large permeability variation and extremely high skin factors have been seen. The authors have run variations of drill stem tests (DSTs), injection tests, and wireline tests to understand the dependency of results to test methods, and the validity of results obtained. Pertinent examples of each type of test are discussed. Finally, recommendations to reconcile well test results to actual well performance are presented.


1970 ◽  
Vol 10 (03) ◽  
pp. 279-290 ◽  
Author(s):  
Ram G. Agarwal ◽  
Rafi Al-Hussainy ◽  
H.J. Ramey

Agarwal, Ram G., Pan American Petroleum Corp. Tulsa, Okla., Pan American Petroleum Corp. Tulsa, Okla., Al-Hussainy, Rafi, Junior Members AIME, Mobil Research and Development Corp., Dallas, Tex., Ramey Jr., H.J., Member AIME, Stanford U. Stanford, Calif. Abstract Due to the cost of extended pressure-drawdownor buildup well tests and the possibility of acquisitionof additional information from well tests, the moderntrend has been toward development of well-testanalysis methods pertinent for short-time data."Short-time" data may be defined as pressureinformation obtained prior to the usual straight-lineportion of a well test. For some time there has been portion of a well test. For some time there has been a general belief that the factors affecting short-timedata are too complex for meaningful interpretations. Among these factors are wellbore storage, variousskin effects such as perforations, partial penetration, fractures of various types, the effect of a finiteformation thickness, and non-Darcy flow. A numberof recent publications have dealt with short-timewell-test analysis. The purpose of this paper isto present a fundamental study of the importance ofwellbore storage with a skin effect to short-timetransient flow. Results indicate that properinterpretations of short-time well-test data can bemade under favorable circumstances. Upon starting a test, well pressures appearcontrolled by wellbore storage entirely, and datacannot be interpreted to yield formation flowcapacity or skin effect. Data can be interpreted toyield the wellbore storage constant, however. Afteran initial period, a transition from wellbore storagecontrol to the usual straight line takes place. Dataobtained during this period can be interpreted toobtain formation flow capacity and skin effect incertain cases. One important result is that thesteady-state skin effect concept is invalid at veryshort times. Another important result is that thetime required to reach the usual straight line isnormally not affected significantly by a finite skineffect. Introduction Many practical factors favor short-duration welltesting. These include loss of revenue during shut-in, costs involved in measuring drawdown or buildupdata for extended periods, and limited availabilityof bottomhole-pressure bombs where it is necessaryto survey large numbers of wells. on the other hand, reservoir engineers are well aware of the desirabilityof running long-duration tests. The result is usuallya compromise, and not necessarily a satisfactoryone. This situation is a common dilemma for thefield engineers who must specify the details of specialwell tests and annual surveys, and interpret theresults. For this reason, much effort has been givento the analysis of short-time tests. The term"short-time" is used herein to indicate eitherdrawdown or buildup tests run for a period of timeinsufficient to reach the usual straight-line portions. Drawdown data taken before the traditional straight-lineportion are ever used in analysis of oil or gas portion are ever used in analysis of oil or gas well performance. Well files often contain well-testdata that were abandoned when it was realized thatthe straight line had not been reached. This situationis particularly odd when it is realized that earlydata are used commonly in other technologies whichemploy similar, or analogous, transient test. It is the objective of this study to investigatetechniques which may be used to interpret informationobtained form well tests at times prior to the normalstraight-line period. THEORY The problem to be considered is the classic oneof flow of a slightly compressible (small pressuregradients) fluid in an ideal radial flow system. Thatis, flow is perfectly radial to a well of radius rwin an isotropic medium, and gravitational forces areneglected. We will consider that the medium isinfinite in extent, since interest is focused on timesshort enough for outer boundary effects not to befelt at the well. SPEJ p. 279


Sign in / Sign up

Export Citation Format

Share Document