Case study: The Research Progress of Using Stimulation Technologies in Horizontal Wells to Develop Low-permeability Reservoirs

2011 ◽  
Author(s):  
Jianwen Yan ◽  
Yurong Zhang ◽  
Wenjun Wang ◽  
Cheng Cai ◽  
Na Zhang ◽  
...  
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liqiang Wang ◽  
Zhengke Li ◽  
Mingji Shao ◽  
Yinghuai Cui ◽  
Wenbo Jing ◽  
...  

After Vogel proposed a dimensionless inflow performance equation, with the rise of the horizontal well production mode, a large number of inflow performance relationship (IPR) equations have emerged. In the productivity analysis of deviated and horizontal wells, the IPR equation proposed by Cheng is mainly used. However, it is still unclear whether these inflow performance models (such as the Cheng, Klins-Majcher, Bendakhlia-Aziz, and Wiggins-Russell-Jennings types) are suitable for productivity evaluations of horizontal and deviated wells in low-permeability reservoirs. In-depth comparisons and analyses have not been carried out, which hinders improvements in the accuracy of the productivity evaluations of horizontal wells in low-permeability reservoirs. In this study, exploratory work was conducted in two areas. First, the linear flow function relationship used in previous studies was improved. Based on the experimental pressure-volume-temperature results, a power exponential flow function model was established according to different intervals greater or less than the bubble point pressure, which was introduced into the subsequent derivation of the inflow performance equation. Second, given the particularity of low-permeability reservoir percolation, considering that the reservoir is a deformation medium, and because of the existence of a threshold pressure gradient in fluid flow, the relationship between permeability and pressure was changed. The starting pressure gradient was introduced into the subsequent establishment of the inflow performance equation. Based on the above two aspects of this work, the dimensionless IPR of single-phase and oil-gas two-phase horizontal wells in a deformed medium reservoir was established by using the equivalent seepage resistance method and complex potential superposition principle. Furthermore, through regression and error analyses of the standard inflow performance data, the correlation coefficients and error distributions of six types of IPR equations applicable to deviated and horizontal wells at different inclination angles were compared. The results show that the IPR equation established in this study features good stability and accuracy and that it can fully reflect the particularity of low-permeability reservoir seepage. It provides the best choice of the IPR between inclined wells and horizontal wells in low-permeability reservoirs. The other types of IPR equations are the Wiggins-Russell-Jennings, Klins-Majcher, Vogel, Fetkovich, Bendakhlia-Aziz, and Harrison equations, listed here in order from good to poor in accuracy.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiangwu Bai ◽  
Zhiping Li ◽  
Fengpeng Lai

Low-permeability oil reservoirs account for more than two-thirds of China’s proven reserves, and most of them are multilayered; the traditional sweet spots focus on single-layered reservoirs. The sweet spots of low-permeability reservoirs have two meanings: the geologically superior reservoir and the beneficial development of the reservoir. In this study, a concept of reservoir stratification coefficient is proposed to evaluate the characteristics of multilayered reservoirs, and three indicators are proposed, namely, reservoir stratification coefficient, energy storage coefficient, and stratigraphic coefficient, as the indicators of sweet spots of multilayered reservoirs. The three indicators are combined into a single indicator using a weighted approach, and the sweet spots can be identified based on the combined indicator. The Xiliu A area of the North China oilfield was selected for a case study. According to the structural, sedimentary, and reservoir characteristics of the block, combined with the development and production conditions, the Sha 3 Member I oil group was selected as the study object of sweet spots of the low-permeability reservoir. The results show that the reservoir stratification coefficient, energy storage coefficient, and stratigraphic coefficient proposed in this study are effective indicators for the preferential selection of sweet spots, which can reflect the longitudinal heterogeneity, energy storage size, and flow capacity of multilayered reservoirs. After a comparative analysis with actual blocks, it was found that the results obtained using the method are consistent with the actual capacity of the reservoir. The production capacity is high. The evaluation effect is ideal, and the applicability is good. Thus, this study provides a new technical method for the evaluation of similar multilayered reservoirs. The findings of this study can help for a better understanding of the development and production conditions and optimization basis of low-permeability reservoirs.


2021 ◽  
Author(s):  
Almaz Makhmutovich Sadykov ◽  
Sergey Anatolyevich Erastov ◽  
Maxim Sergeevich Antonov ◽  
Denis Vagizovich Kashapov ◽  
Tagir Ramilevich Salakhov ◽  
...  

Abstract One of the fundamental methods of developing low-permeability reservoirs is the use of multi-stage hydraulic fracturing in horizontal wells. Decreasing wells productivity requires geological and technical measures, where one of the methods is "blind" refracturing. Often, only one "blind" hydraulic fracturing is carried out for all ports of multistage hydraulic fracturing, the possibility of carrying out two or more stages of "blind" hydraulic fracturing is considered in this article. The purpose of the article is to increase the productivity of horizontal wells with multi-stage hydraulic fracturing by the "blind" refracturing method. A one-stage and two-stage approach was implemented when planning and performing "blind" hydraulic fracturing with analysis of treatment pressures, indicating a possibility for reorientation of the fracture during the second stage in a horizontal wellbore. Based on the experience of the "blind" hydraulic fracturing performed at the Kondinskoye field, "NK "Kondaneft" JSC carried out pilot work on "blind" refracturing at four horizontal wells of the Zapadno -Erginskoye field. A geomechanical model was used, built based on well logging and core studies carried out at "RN-BashNIPIneft" LLC. The total mass of the planned proppant per well was 280-290 tons, while this tonnage was pumped in one or more stages. A one-stage "blind" refracturing approach was successfully performed in one well, two-stage hydraulic fracturing was implemented in three wells, where in one of the wells, after two stages to open ports, initial hydraulic fracturing was also carried out to the last, previously non-activated port. In the case of two-stage hydraulic fracturing, the first stage purpose was to saturate the reservoir-fracture system with the injection of a "sand plug" with a high concentration of proppant at the end of the job to isolate the initial injectivity interval, determined based on the interpretation of well logging data and analysis of the wellhead treatment pressure. The second stage purpose was the initiation and possible reorientation of the fracture in a new interval, confirmed by an increase in surface pressure during hydraulic fracturing and instantaneous shut-in pressure. This article summarizes the results and lessons learned from the pilot works carried out using the geomechanical model and well productivity assessment before and after "blind" fracturing. The analysis of surface pressure based on production data indicating fracture reorientation is presented. The recommendations and accumulated experience presented in this work should increase the effectiveness of repeated "blind" refracturing in horizontal wells with multi-stage hydraulic fracturing.


2021 ◽  
Author(s):  
Azat Albertovich Gimazov ◽  
Ildar Shamilevich Bazyrov

Abstract The article describes a method for developing low-permeability reservoirs using horizontal wells with multi-stage hydraulic fracturing. The effectiveness of the new method lies in protecting the horizontal part of the production well by drilling it through a non-reservoir plastic reservoir adjacent directly to the target reservoir. The paper considers various implementations of the technology and estimates the increase in oil recovery factor for each of them based on the results of hydrodynamic modeling. The risks associated with the implementation of the technology are considered. Methods for their reduction are proposed.


Author(s):  
Вадим Александрович Чемеков ◽  
Артем Маратович Шагиахметов

Сейчас, когда истощение базы углеводородного сырья происходит все быстрее, разработка залежей низкопроницаемых коллекторов требует дополнительных методов стандартных способов эксплуатации. Одним из методов добычи трудноизвлекаемых запасов является многостадийный гидроразрыв пласта, который позволяет существенно увеличить эффективность эксплуатации горизонтальных скважин. Now, when the depletion of the hydrocarbon base is faster, the development of low-permeability reservoirs requires additional methods of standard operating methods. One of the methods for extracting hard-to-recover reserves is multi-stage hydraulic fracturing, which can significantly increase the efficiency of horizontal wells.


2013 ◽  
Vol 838-841 ◽  
pp. 1869-1872
Author(s):  
Xiu Juan Fu ◽  
Shu Hong Ji

The technologies applied to develop PetroChina low-permeability reservoirs are summarized in the past more than 20 years. These technologies include water injection in advance, waterflood pattern optimization, fracturing and horizontal wells, etc. In addition, future technology trend is also forecasted.


Sign in / Sign up

Export Citation Format

Share Document