Mechanism of Alcohol Displacement of Oil from Porous Media

1961 ◽  
Vol 1 (03) ◽  
pp. 195-212 ◽  
Author(s):  
J.J. Taber ◽  
I.S.K. Kamath ◽  
Ronald L. Reed

Abstract Alcohol floods of consolidated sandstone cores have shown the process to be strongly dependent on the phase behavior of the particular alcohol-oil-water system used. This means that in many cases the mechanism does not conform to the idea of a piston-like displacement. Instead, it is found that by changing the alcohol it is possible to change the relative velocities of the oil and water and, in fact, the entire mechanism of the process. The effects of rate, viscosity, initial saturation, distance travelled and hysteresis of relative permeability on the alcohol flooding mechanism are discussed. Introduction Reasons for interest in the use of alcohol to miscibly displace oil and water from a porous medium appear in the existing literature. The mechanism of the displacement has been considered and the apparent implications formulated into a theory which presumably would enable one to predict the essential features of the process. Unfortunately, most of the reported experiments have been performed with unconsolidated or artificially consolidated sands. With these systems some of the noteworthy facets of the process are obscured and resulting data appear uncertain. It is the purpose of this paper to show how the use of consolidated sandstones has led to revision of the mechanism and, hence, the theory of alcohol flooding. The practical result is increased pessimism toward the possibilities of commercial application of the simplest form of the alcohol-slug process. However elucidation of the mechanism has made it possible to define the essential characteristics of a system of slugs which will behave in a nearly piston-like fashion and, thus, yield the best possible result. Equilibrium Phase Behavior Fig. 1 is a diagram of the ternary system isopropyl alcohol (IPA)-Soltrol-calcium chloride brine. Brine was used to prevent plugging of the core and calcium chloride was used because sodium chloride brine exhibits a solid phase with Soltrol and IPA. If alcohol is added in increments to the immiscible mixture of water and oil represented by Point A, the path followed by the successively equilibrated samples will be on the Line ABC and pass from the immiscible region to the miscible region by crossing the binodal curve at B. Consider the intersection D of this path with the tie Line EF. The quantity of oleic phase is proportional to the Segment ED and the quantity of the aqueous phase is proportional to DF. Compositions of the two phases are specified by Points E and F. It is clear that in the case shown the oleic phase is diminishing and entirely disappears when miscibility is achieved.

1990 ◽  
Vol 94 (6) ◽  
pp. 2546-2552 ◽  
Author(s):  
R. G. Laughlin ◽  
R. L. Munyon ◽  
Y. C. Fu ◽  
A. J. Fehl

1995 ◽  
Vol 402 ◽  
Author(s):  
D. B. Aldrich ◽  
F. M. D'Heurle ◽  
D. E. Sayers ◽  
R. J. Nemanich

AbstractThe stability of C54 Ti(Si1−yGey)2 films in contact with Si1−xGex substrates was investigated. The titanium germanosilicide films were formed from the Ti − Si1−xGex solid phase metallization reaction. It was observed that Ti(Si1−yGey) 2 initially forms with the same germanium content as the Si1−x Gex substrate (i.e., y = x). Following the initial formation of TiM2 (M = Sil−yGey), silicon and germanium from the substrate diffuse into the TiM2 layer, the composition of the TiM2 changes, and Si1−z Gez precipitates form along the TiM2 grain boundaries. The germanium content of the Ti(Sil−y Gey)2 decreases, and the Sil−z Gez precipitates are germanium rich such that y < x < z. This instability of the TiM2 film and the dynamics of the germanium segregation were examined using the Ti-Si-Ge ternary equilibrium diagram. The relevant region of the ternary diagram is the two phase domain limited by a Si-Ge solid solution and a TiSi2 − TiGe2 solid solution. In this study first approximation Ti(Sil−y Gey)2 -to- Sil−xGex tie lines were calculated on the basis of classical thermodynamics. The tie line calculations indicate that for C54 Ti(Sil−yGey)2 to be stable in contact with Sil−xGex, the compositions of the two phases in equilibrium must be such that y < x. The specific compositions of the two phases in equilibrium depend on the temperature and the relative quantities of the two phases. The dynamic processes by which the Ti(Si1−yGey)2/Si1−x. Gex, system progresses from the as-formed state (y = x) to the equilibrium state (y < x) can be predicted using the tie line calculations.


Author(s):  
K.K. Soni ◽  
D.B. Williams ◽  
J.M. Chabala ◽  
R. Levi-Setti ◽  
D.E. Newbury

In contrast to the inability of x-ray microanalysis to detect Li, secondary ion mass spectrometry (SIMS) generates a very strong Li+ signal. The latter’s potential was recently exploited by Williams et al. in the study of binary Al-Li alloys. The present study of Al-Li-Cu was done using the high resolution scanning ion microprobe (SIM) at the University of Chicago (UC). The UC SIM employs a 40 keV, ∼70 nm diameter Ga+ probe extracted from a liquid Ga source, which is scanned over areas smaller than 160×160 μm2 using a 512×512 raster. During this experiment, the sample was held at 2 × 10-8 torr.In the Al-Li-Cu system, two phases of major importance are T1 and T2, with nominal compositions of Al2LiCu and Al6Li3Cu respectively. In commercial alloys, T1 develops a plate-like structure with a thickness <∼2 nm and is therefore inaccessible to conventional microanalytical techniques. T2 is the equilibrium phase with apparent icosahedral symmetry and its presence is undesirable in industrial alloys.


1986 ◽  
Vol 108 (3) ◽  
pp. 649-653 ◽  
Author(s):  
E. M. Sparrow ◽  
G. A. Gurtcheff ◽  
T. A. Myrum

Melting experiments were performed encompassing both pure and impure substances. The pure substances included n-octadecane paraffin and n-eicosane paraffin, while the impure substances were mixtures synthesized from the pure paraffins. The experiments were carried out in a closed vertical tube whose wall was subjected to a step-change increase in temperature to initiate the melting. For each impure substance, supplementary measurements were made of two characteristic temperatures: the temperature T** at which melting of the solid phase first begins and the lowest temperature T* at which the melting can go to completion. For a pure substance, T** = T*. The time-dependent melting results for all the investigated substances, both pure and impure, were well correlated as a function of FoSte**(Gr**)1/8 alone, where the ** signifies the presence of T** in the temperature difference which appears in Ste and Gr. This correlation enables melting rates for impure substances to be determined from melting rates for pure substances. The T** values needed for the implementation of the correlation can be obtained from simple experiments, obviating the need for the complete equilibrium phase diagram.


2007 ◽  
Vol 129 (11) ◽  
pp. 1415-1421 ◽  
Author(s):  
Joseph Borowsky ◽  
Timothy Wei

An experimental investigation of a two-phase pipe flow was undertaken to study kinematic and dynamic parameters of the fluid and solid phases. To accomplish this, a two-color digital particle image velocimetry and accelerometry (DPIV∕DPIA) methodology was used to measure velocity and acceleration fields of the fluid phase and solid phase simultaneously. The simultaneous, two-color DPIV∕DPIA measurements provided information on the changing characteristics of two-phase flow kinematic and dynamic quantities. Analysis of kinematic terms indicated that turbulence was suppressed due to the presence of the solid phase. Dynamic considerations focused on the second and third central moments of temporal acceleration for both phases. For the condition studied, the distribution across the tube of the second central moment of acceleration indicated a higher value for the solid phase than the fluid phase; both phases had increased values near the wall. The third central moment statistic of acceleration showed a variation between the two phases with the fluid phase having an oscillatory-type profile across the tube and the solid phase having a fairly flat profile. The differences in second and third central moment profiles between the two phases are attributed to the inertia of each particle type and its response to turbulence structures. Analysis of acceleration statistics provides another approach to characterize flow fields and gives some insight into the flow structures, even for steady flows.


1956 ◽  
Vol 48 (4) ◽  
pp. 816-816
Author(s):  
C. H. Duffy ◽  
W. H. Corcoran ◽  
B. H. Sage

2021 ◽  
pp. 2150469
Author(s):  
T. G. Naghiyev ◽  
R. M. Rzayev

The solid solutions of [Formula: see text] were synthesized by solid-phase reactions from powder components of CaS, BaS, and Ga2S3. The temperature-concentration dependences of the Gibbs free energy of formation of [Formula: see text] solid solutions from ternary compounds and phase diagrams of the CaGa2S4–BaGa2S4 were determined by a calculation method. It was revealed that continuous solid solutions are formed in these systems. The spinodal decomposition of [Formula: see text] solid solutions into two phases is predicted at ordinary temperatures.


Langmuir ◽  
2020 ◽  
Vol 36 (4) ◽  
pp. 986-990 ◽  
Author(s):  
Masaaki Akamatsu ◽  
Kosuke Ogura ◽  
Koji Tsuchiya ◽  
Kenichi Sakai ◽  
Masahiko Abe ◽  
...  

2014 ◽  
Vol 69 (4) ◽  
Author(s):  
Norfahana Abd-Talib ◽  
Siti Hamidah Mohd-Setapar ◽  
Aidee Kamal Khamis

Over recent years, there has been an explosive growth of sample preparation techniques. Sample preparation is in most cases meant to be the isolation online or offline concentration of some components of interest or target analytes. Solid phase extraction (SPE) is a very popular technique nowadays in sample preparation. The principal is quite similar with liquid- liquid extraction (LLE) which involves partition of solutes between two phases. But, there are some differences between them and some benefits and limitations of difference types of SPE technique like presented in this paper.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012138
Author(s):  
I M Indrupskiy ◽  
P A Chageeva

Abstract Mathematical models of phase behavior are widely used to describe multiphase oil and gas-condensate systems during hydrocarbon recovery from natural petroleum reservoirs. Previously a non-equilibrium phase behavior model was proposed as an extension over generally adopted equilibrium models. It is based on relaxation of component chemical potentials difference between phases and provides accurate calculations in some typical situations when non-instantaneous changing of phase fractions and compositions in response to variations of pressure or total composition is to be considered. In this paper we present a thermodynamic analysis of the relaxation model. General equations of non-equilibrium thermodynamics for multiphase flows in porous media are considered, and reduced entropy balance equation for the relaxation process is obtained. Isotropic relaxation process is simulated for a real multicomponent hydrocarbon system with different values of characteristic relaxation time using the non-equilibrium model implemented in the PVT Designer module of the RFD tNavigator simulation software. The results are processed with a special algorithm implemented in Matlab to calculate graphs of the total entropy time derivative and its constituents in the entropy balance equation. It is shown that the constituents have different signs, and the greatest influence on the entropy is associated with the interphase flow of the major component of the mixture and the change of the total system volume in the isotropic process. The characteristic relaxation time affects the rate at which the entropy is approaching its maximum value.


Sign in / Sign up

Export Citation Format

Share Document