Multiple Foam States and Long-Distance Foam Propagation in Porous Media

SPE Journal ◽  
2012 ◽  
Vol 17 (04) ◽  
pp. 1231-1245 ◽  
Author(s):  
E.. Ashoori ◽  
D.. Marchesin ◽  
W.R.. R. Rossen

Summary Creation of low-mobility foam for enhanced oil recovery (EOR) is triggered by an increase in superficial velocity; thereafter, injection rate can be reduced to lower values, and strong foam remains at velocities at which weak foam was previously observed. Here, we consider whether strong foam created near an injection well can propagate to large distances from the well where superficial velocity is much smaller. We study strong-foam propagation with finite-difference simulations and Riemann solutions, applying a population-balance foam model that represents the multiple steady states of foam. Our simulations show that strong foam cannot displace directly the initial high-water-saturation bank initially in the reservoir at low superficial velocities; it pushes a weak-foam state with lower velocity that in turn displaces the bank ahead. Our traveling-wave solutions show that strong foam propagates more slowly as superficial velocity decreases and stops propagating at yet lower superficial velocities, in agreement with the experiment. Failure of propagation occurs at superficial velocities greater than that at which the strong-foam state disappears; it raises concerns for long-distance propagation of strong foam created near the injection well. In the context of the model, it is not extraordinary destruction of foam at the front that slows the propagation of strong foam, but failure of foam (re-)generation at the front. Our model also represents for the first time a process where strong foam is created near the exit of a core and then propagates upstream, as seen in some experiments.

Author(s):  
Anan Tantianon ◽  
Falan Srisuriyachai

Injection of surfactant into waterflooded reservoir which has considerably high water saturation may cause a reduction in surfactant efficiency by means of surfactant dilution and adsorption. Therefore, to maintain expected lowest interfacial tension (IFT) condition, large amount of surfactant, which leads to higher cost, is inevitable. Several studies have observed that reduction in surfactant concentration slug at the late time can cause a shift in surface equilibrium, resulting in desorption of retained active surfactant agents and therefore, it is possible to obtain benefit from this phenomenon to achieve longer period of the lowest IFT condition while maintaining the amount of surfactant used. Hence, this study aims to evaluate effects of two-slug surfactant flooding compared to single-slug while maintaining amount of surfactant used constant in waterflooded reservoir. The performance is evaluated based on additional oil recovery using STAR® reservoir simulation program. Simulated results indicated that two-slug surfactant injection yields better oil recovery than conventional single-slug surfactant flooding due to benefit of sacrificial adsorption and desorption process of active surfactant. Selecting type of two-slug surfactant flooding strategy would depend on surfactant concentration of single-slug which is chosen for modification; whereas, the selection of magnitude of concentration contrast between two slugs would depend on placement of surfactant mass ratio.


2018 ◽  
Vol 135 ◽  
pp. 67-77 ◽  
Author(s):  
Hamidreza Norouzi ◽  
Mehdi Madhi ◽  
Mojtaba Seyyedi ◽  
Mohmmad Rezaee

SPE Journal ◽  
2013 ◽  
Vol 18 (01) ◽  
pp. 179-188 ◽  
Author(s):  
Mazda Irani ◽  
Sahar Ghannadi

Summary SAGD is one successful thermal recovery technique applied in the Athabasca and Peace River reservoirs in central and northern Alberta, Canada. In SAGD, steam is injected into a horizontal injection well and is forced outward, losing its latent heat when it comes into contact with the cold bitumen at the edge of a depletion chamber. As a consequence, the viscosity of the bitumen falls several orders of magnitude, its mobility rises several orders of magnitude, and then it flows under gravity toward a horizontal production well located several meters below and parallel to the injection well. Heat-transfer mechanisms are pivotal to the SAGD process. Though heat energy is transferred from steam to reservoir by conduction and convection, heat transfer by convection is not considered in the classic SAGD mathematical models such as Butler's. Researchers such as Butler and Stephens (1981), Reis (1992), Akin (2005), Liang (2005), Nukhaev et al. (2006), and Azad and Chalaturnyk (2010) considered conduction from steam to cold reservoir to be the only heat-transfer component. However, because the heat capacity of water is typically two to five times that of bitumen, convection caused by the mobile condensate flow in the reservoir may contradict these studies. Farouq-Ali (1997) was the first to criticize the assumption that there is only a thermal conduction mechanism in the SAGD process. He pointed out that with so much condensate flowing, convection would be expected to be the dominant heat-transfer mechanism, which can be plausible at high temperatures. In response, Edmunds (1999a) stated that on the basis of the associated change in enthalpy, the heat transfer into a cold reservoir because of convection is probably less than 5% of that because of conduction. Ito (1999) challenged Edmunds (1999a) statement, on the basis of Ito and Suzuki (1996, 1999) and Ito et al. (1998), pointing out that “this number, 5%; i.e., ratio between convection to conduction presented by Edmunds (1999a) is unrealistically low, (and) it should be in the range of 50%.” This study examined the relative roles of convective and conductive heat transfer at the edge of SAGD steam chambers. In summary, the mathematical model developed in this study considered both conduction and convection, and the resultant output from the model is reasonably consistent with published field data. This study supports the idea that although convection can dominate near the chamber edge in high-water-saturation reservoirs, in bitumen-rich reservoirs, its contribution to heat transfer is less than 1% and can be neglected.


SPE Journal ◽  
2013 ◽  
Vol 18 (01) ◽  
pp. 134-145 ◽  
Author(s):  
Mazda Irani ◽  
Sahar Ghannadi

Summary SAGD is one successful thermal recovery technique applied in the Athabasca and Peace River reservoirs in central and northern Alberta, Canada. In SAGD, steam is injected into a horizontal injection well and is forced outward, losing its latent heat when it comes into contact with the cold bitumen at the edge of a depletion chamber. As a consequence, the viscosity of the bitumen falls several orders of magnitude, its mobility rises several orders of magnitude, and then it flows under gravity toward a horizontal production well located several meters below and parallel to the injection well. Heat-transfer mechanisms are pivotal to the SAGD process. Though heat energy is transferred from steam to reservoir by conduction and convection, heat transfer by convection is not considered in the classic SAGD mathematical models such as Butler?s. Researchers such as Butler and Stephens (1981), Reis (1992), Akin (2005), Liang (2005), Nukhaev et al. (2006), and Azad and Chalaturnyk (2010) considered conduction from steam to cold reservoir to be the only heat-transfer component. However, because the heat capacity of water is typically two to five times that of bitumen, convection caused by the mobile condensate flow in the reservoir may contradict these studies. Farouq-Ali (1997) was the first to criticize the assumption that there is only a thermal conduction mechanism in the SAGD process. He pointed out that with so much condensate flowing, convection would be expected to be the dominant heat-transfer mechanism, which can be plausible at high temperatures. In response, Edmunds (1999a) stated that on the basis of the associated change in enthalpy, the heat transfer into a cold reservoir because of convection is probably less than 5% of that because of conduction. Ito (1999) challenged Edmunds (1999a) statement, on the basis of Ito and Suzuki (1996, 1999) and Ito et al. (1998), pointing out that "this number, 5%; i.e., ratio between convection to conduction presented by Edmunds (1999a) is unrealistically low, (and) it should be in the range of 50%. This study examined the relative roles of convective and conductive heat transfer at the edge of SAGD steam chambers. In summary, the mathematical model developed in this study considered both conduction and convection, and the resultant output from the model is reasonably consistent with published field data. This study supports the idea that although convection can dominate near the chamber edge in high-water-saturation reservoirs, in bitumen-rich reservoirs, its contribution to heat transfer is less than 1% and can be neglected.


SPE Journal ◽  
2020 ◽  
Vol 25 (06) ◽  
pp. 3457-3471
Author(s):  
Guanqun Yu ◽  
Sebastien Vincent-Bonnieu ◽  
William R. Rossen

1985 ◽  
Vol 25 (06) ◽  
pp. 945-953 ◽  
Author(s):  
Mark A. Miller ◽  
H.J. Ramey

Abstract Over the past 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. Some of the reported results, however, have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperatures. Laboratory dynamic-displacement relative permeability measurements were made on unconsolidated and consolidated sand cores with water and a refined white mineral oil. Experiments were run on 2-in. [5.1-cm] -diameter, 20-in. [52.-cm] -long cores from room temperature to 300F [149C]. Unlike previous researchers, we observed essentially no changes with temperature in either residual saturations or relative permeability relationships. We concluded that previous results may have been affected by viscous previous results may have been affected by viscous instabilities, capillary end effects, and/or difficulties in maintaining material balances. Introduction Interest in measuring relative permeabilities at elevated temperatures began in the 1960's with petroleum industry interest in thermal oil recovery. Early thermal oil recovery field operations (well heaters, steam injection, in-situ combustion) indicated oil flow rate increases far in excess of what was predicted by viscosity reductions resulting from heating. This suggested that temperature affects relative permeabilities. One of the early studies of temperature effects on relative permeabilities was presented by Edmondson, who performed dynamic displacement measurements with crude performed dynamic displacement measurements with crude and white oils and distilled water in Berea sandstone cores. Edmondson reported that residual oil saturations (ROS's) (at the end of 10 PV's of water injected) decreased with increasing temperature. Relative permeability ratios decreased with temperature at high water saturations but increased with temperature at low water saturations. A series of elevated-temperature, dynamic-displacement relative permeability measurements on clean quartz and "natural" unconsolidated sands were reported by Poston et al. Like Edmondson, Poston et al. reported a decrease in the "practical" ROS (at less than 1 % oil cut) as temperature increased. Poston et al. also reported an increase in irreducible water saturation. Although irreducible water saturations decreased with decreasing temperature, they did not revert to the original room temperature values. It was assumed that the cores became increasingly water-wet with an increase in both temperature and time; measured changes of the IFT and the contact angle with temperature increase, however, were not sufficient to explain observed effects. Davidson measured dynamic-displacement relative permeability ratios on a coarse sand and gravel core with permeability ratios on a coarse sand and gravel core with white oil displaced by distilled water, nitrogen, and superheated steam at temperatures up to 540F [282C]. Starting from irreducible water saturation, relative permeability ratio curves were similar to Edmondson's. permeability ratio curves were similar to Edmondson's. Starting from 100% oil saturation, however, the curves changed significantly only at low water saturations. A troublesome aspect of Davidson's work was that he used a hydrocarbon solvent to clean the core between experiments. No mention was made of any consideration of wettability changes, which could explain large increases in irreducible water saturations observed in some runs. Sinnokrot et al. followed Poston et al.'s suggestion of increasing water-wetness and performed water/oil capillary pressure measurements on consolidated sandstone and limestone cores from room temperature up to 325F [163C]. Sinnokrot et al confirmed that, for sandstones, irreducible water saturation appeared to increase with temperature. Capillary pressures increased with temperature, and the hysteresis between drainage and imbibition curves reduced to essentially zero at 300F [149C]. With limestone cores, however, irreducible water saturations remained constant with increase in temperature, as did capillary pressure curves. Weinbrandt et al. performed dynamic displacement experiments on small (0.24 to 0.49 cu in. [4 to 8 cm3] PV) consolidated Boise sandstone cores to 175F [75C] PV) consolidated Boise sandstone cores to 175F [75C] with distilled water and white oil. Oil relative permeabilities shifted toward high water saturations with permeabilities shifted toward high water saturations with increasing temperature, while water relative permeabilities exhibited little change. Weinbrandt et al. confirmed the findings of previous studies that irreducible water saturation increases and ROS decreases with increasing temperature. SPEJ P. 945


1982 ◽  
Vol 22 (05) ◽  
pp. 647-657 ◽  
Author(s):  
J.P. Batycky ◽  
B.B. Maini ◽  
D.B. Fisher

Abstract Miscible gas displacement data obtained from full-diameter carbonate reservoir cores have been fitted to a modified miscible flow dispersion-capacitance model. Starting with earlier approaches, we have synthesized an algorithm that provides rapid and accurate determination of the three parameters included in the model: the dispersion coefficient, the flowing fraction of displaceable volume, and the rate constant for mass transfer between flowing and stagnant volumes. Quality of fit is verified with a finite-difference simulation. The dependencies of the three parameters have been evaluated as functions of the displacement velocity and of the water saturation within four carbonate cores composed of various amounts of matrix, vug, and fracture porosity. Numerical simulation of a composite core made by stacking three of the individual cores has been compared with the experimental data. For comparison, an analysis of Berea sandstone gas displacement also has been provided. Although the sandstone displays a minor dependence of gas recovery on water saturation, we found that the carbonate cores are strongly affected by water content. Such behavior would not be measurable if small carbonate samples that can reflect only matrix properties were used. This study therefore represents a significant assessment of the dispersion-capacitance model for carbonate cores and its ability to reflect changes in pore interconnectivity that accompany water saturation alteration. Introduction Miscible displacement processes are used widely in various aspects of oil recovery. A solvent slug injected into a reservoir can be used to displace miscibly either oil or gas. The necessary slug size is determined by the rate at which deterioration can occur as the slug is Another commonly used miscible process involves addition of a small slug within the injected fluids or gases to determine the nature and extent of inter well communication. The quantity of tracer material used is dictated by analytical detection capabilities and by an understanding of the miscible displacement properties of the reservoir. We can develop such understanding by performing one-dimensional (1D) step-change miscible displacement experiments within the laboratory with selected reservoir core material. The effluent profiles derived from the experiments then are fitted to a suitable mathematical model to express the behavior of each rock type through the use of a relatively small number of parameters. This paper illustrates the efficient application of the three-parameter, dispersion-capacitance model. Its application previously has been limited to use with small homogeneous plugs normally composed of intergranular and intencrystalline porosity, and its suitability for use with cores displaying macroscopic heterogeneity has been questioned. Consequently, in addition to illustrating its use with a homogeneous sandstone, we fit data derived from previously reported full-diameter carbonate cores. As noted earlier, these cores were heterogeneous, and each of them displayed different dual or multiple types of porosity characteristic of vugular and fractured carbonate rocks. Dispersion-Capacitance Model The displacement efficiency of one fluid by a second immiscible fluid within a porous medium depends on the complexity of rock and fluid properties. SPEJ P. 647^


2001 ◽  
Vol 4 (06) ◽  
pp. 455-466 ◽  
Author(s):  
A. Graue ◽  
T. Bognø ◽  
B.A. Baldwin ◽  
E.A. Spinler

Summary Iterative comparison between experimental work and numerical simulations has been used to predict oil-recovery mechanisms in fractured chalk as a function of wettability. Selective and reproducible alteration of wettability by aging in crude oil at an elevated temperature produced chalk blocks that were strongly water-wet and moderately water-wet, but with identical mineralogy and pore geometry. Large scale, nuclear-tracer, 2D-imaging experiments monitored the waterflooding of these blocks of chalk, first whole, then fractured. This data provided in-situ fluid saturations for validating numerical simulations and evaluating capillary pressure- and relative permeability-input data used in the simulations. Capillary pressure and relative permeabilities at each wettability condition were measured experimentally and used as input for the simulations. Optimization of either Pc-data or kr-curves gave indications of the validity of these input data. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations than matching production profiles only. Introduction Laboratory waterflood experiments, with larger blocks of fractured chalk where the advancing waterfront has been imaged by a nuclear tracer technique, showed that changing the wettability conditions from strongly water-wet to moderately water-wet had minor impact on the the oil-production profiles.1–3 The in-situ saturation development, however, was significantly different, indicating differences in oil-recovery mechanisms.4 The main objective for the current experiments was to determine the oil-recovery mechanisms at different wettability conditions. We have reported earlier on a technique that reproducibly alters wettability in outcrop chalk by aging the rock material in stock-tank crude oil at an elevated temperature for a selected period of time.5 After applying this aging technique to several blocks of chalk, we imaged waterfloods on blocks of outcrop chalk at different wettability conditions, first as a whole block, then when the blocks were fractured and reassembled. Earlier work reported experiments using an embedded fracture network,4,6,7 while this work also studied an interconnected fracture network. A secondary objective of these experiments was to validate a full-field numerical simulator for prediction of the oil production and the in-situ saturation dynamics for the waterfloods. In this process, the validity of the experimentally measured capillary pressure and relative permeability data, used as input for the simulator, has been tested at strongly water-wet and moderately water-wet conditions. Optimization of either Pc data or kr curves for the chalk matrix in the numerical simulations of the whole blocks at different wettabilities gave indications of the data's validity. History matching both the production profile and the in-situ saturation distribution development gave higher confidence in the simulations of the fractured blocks, in which only the fracture representation was a variable. Experimental Rock Material and Preparation. Two chalk blocks, CHP8 and CHP9, approximately 20×12×5 cm thick, were obtained from large pieces of Rørdal outcrop chalk from the Portland quarry near Ålborg, Denmark. The blocks were cut to size with a band saw and used without cleaning. Local air permeability was measured at each intersection of a 1×1-cm grid on both sides of the blocks with a minipermeameter. The measurements indicated homogeneous blocks on a centimeter scale. This chalk material had never been contacted by oil and was strongly water-wet. The blocks were dried in a 90°C oven for 3 days. End pieces were mounted on each block, and the whole assembly was epoxy coated. Each end piece contained three fittings so that entering and exiting fluids were evenly distributed with respect to height. The blocks were vacuum evacuated and saturated with brine containing 5 wt% NaCl+3.8 wt% CaCl2. Fluid data are found in Table 1. Porosity was determined from weight measurements, and the permeability was measured across the epoxy-coated blocks, at 2×10–3 µm2 and 4×10–3 µm2, for CHP8 and CHP9, respectively (see block data in Table 2). Immobile water saturations of 27 to 35% pore volume (PV) were established for both blocks by oilflooding. To obtain uniform initial water saturation, Swi, oil was injected alternately at both ends. Oilfloods of the epoxy-coated block, CHP8, were carried out with stock-tank crude oil in a heated pressure vessel at 90°C with a maximum differential pressure of 135 kPa/cm. CHP9 was oilflooded with decane at room temperature. Wettability Alteration. Selective and reproducible alteration of wettability, by aging in crude oil at elevated temperatures, produced a moderately water-wet chalk block, CHP8, with similar mineralogy and pore geometry to the untreated strongly water-wet chalk block CHP9. Block CHP8 was aged in crude oil at 90°C for 83 days at an immobile water saturation of 28% PV. A North Sea crude oil, filtered at 90°C through a chalk core, was used to oilflood the block and to determine the aging process. Two twin samples drilled from the same chunk of chalk as the cut block were treated similar to the block. An Amott-Harvey test was performed on these samples to indicate the wettability conditions after aging.8 After the waterfloods were terminated, four core plugs were drilled out of each block, and wettability measurements were conducted with the Amott-Harvey test. Because of possible wax problems with the North Sea crude oil used for aging, decane was used as the oil phase during the waterfloods, which were performed at room temperature. After the aging was completed for CHP8, the crude oil was flushed out with decahydronaphthalene (decalin), which again was flushed out with n-decane, all at 90°C. Decalin was used as a buffer between the decane and the crude oil to avoid asphalthene precipitation, which may occur when decane contacts the crude oil.


Sign in / Sign up

Export Citation Format

Share Document