orthogonal test design
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chaoyi Ma ◽  
Zhengguo Zhu ◽  
Zhichun Fang ◽  
Zhaobin Li ◽  
Liu Liu

To explore the tendency of rockburst, a similar material ratio was optimised based on white sandstone. Quartz sand, iron powder, gypsum, cement, retarder, and a water-reducing agent were used as the main materials. The orthogonal test design principle was used to determine the four-factor and four-level orthogonal test design with the quartz sand content, iron powder content, gypsum-cement ratio, and sand particle size as the influencing factors. Uniaxial compression tests and tensile tests were conducted on similar material models. The tensile strength and elastic modulus were analysed, the significance of each influencing factor was investigated, and the test results of the similar materials were fitted. The optimal ratios of the similar materials of white sandstone were found to be quartz sand content of 36%, iron powder content of 1.9%, gypsum-cement ratio of 1.8 : 1, and sand particle size of 2–4 mm. The physical and mechanical properties of the similar materials were consistent with those of white sandstone. The mechanical properties of the similar materials were compared with those of the original rock. By judging the rockburst propensity and verifying the index, it is concluded that the similar materials can effectively simulate the characteristics of white sandstone, which is an ideal similar material of rockburst, and they all show strong rockburst propensity. The rock specimens with optimal proportions were produced, and the internal energy changes and rockburst mechanisms of the model at different temperatures were discussed. The results show that the rockburst process is closely related to energy, such as thermal energy and elastic strain energy, and the rock failure process can be divided into three main stages: energy accumulation, microcrack formation and propagation, and crack penetration and bursting. It provides an experimental basis for the preparation of rockburst similar materials that are more in line with the actual situation of the project and provides a basis for discussing the energy criterion of rockburst.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4411
Author(s):  
Ping He ◽  
Haoda Ruan ◽  
Congyang Wang ◽  
Hao Lu

This study used a mechanochemical method to analyze the recycling mechanism of polyurethane foam and optimize the recycling process. The use of mechanochemical methods to regenerate the polyurethane foam powder breaks the C–O bond of the polyurethane foam and greatly enhances the activity of the powder. Based on orthogonal test design, the mesh, proportion, temperature, and time were selected to produce nine recycled boards by heat pressing. Then, the influence of four factors on the thermal conductivity and tensile strength of the recycled board was analyzed. The results show that 120 mesh polyurethane foam powder has strong activity, and the tensile strength can reach 9.913 Mpa when it is formed at 205 °C and 40 min with 50% PP powder. With the help of the low thermal conductivity of the polyurethane foam, the thermal conductivity of the recycled board can reach 0.037 W/m·K at the parameter of 40 mesh, 80%, 185 °C, 30 min. This research provides an effective method for the recycling of polyurethane foam.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yingwen Ma ◽  
Yuchen Zhang ◽  
Yang Liu ◽  
Ming Yue ◽  
Dongsen Wang ◽  
...  

To protect the marine ecological environment of Bohai Bay, the waste drilling fluid in Bohai oilfield have to be treated. In the light of the composition characteristics of Biodrill-A drilling fluid, the compounding method of the inorganic–organic flocculants was adopted to assist the flocculation and solid–fluid separation of Biodrill-A drilling fluid. Through the orthogonal test design, the main factors impacting the flocculation effect on Biodrill-A drilling fluid were found to the concentration of inorganic flocculant CaCl2 and the flocculation pH value. The optimal flocculation treatment was further obtained through single-factor optimization. Specifically, when the inorganic flocculant CaCl2 concentration was 0.9 w/v%, the organic flocculant concentration was 0.01 w/v%, the flocculation pH was 8, and the flocculation time was 7 min. Eventually, the final dewatering rate could reach 84.02%. In the optimized compound flocculants, the inorganic flocculant CaCl2 reduced the zeta potential of clay particles by electric neutralization to decrease the repulsion among particles, and the organic one could absorb and wrap the clay particles through bridging curling and electric neutralization after flocculation destabilization. Both inorganic and organic flocculants facilitated the large flocs and particles of clay particles. The field test showed that the inorganic–organic flocculants were suitable for the on-line flocculation treatment process based on centrifugal machine. The waste drilling fluid was reduced by 82%, and the water content of the separated solid phase was as low as 25.7%.


2021 ◽  
Vol 67 (2) ◽  
pp. 148-154
Author(s):  
Chenzhe Kang ◽  
Yanan Liu ◽  
Aiping Chi ◽  
Zilin Zhang

Fatigue syndrome is a major health problem that affects the voluntary activities of an individual. Particularly, exercise-induced fatigue has become a serious concern in people's health. Since polysaccharides from various medicinal plants have been reported for anti-fatigue effect, the current study deals with the anti-fatigue potential of water-soluble polysaccharides of the Chinese medicinal plant Semen cassiae (Cassia obtusifolia L.) in BALB/c mice. Water-soluble polysaccharides from Semen cassiae were extracted using aqueous solvent (water). An orthogonal test design was employed for the optimization of polysaccharide extraction. The conditions optimized through this design unveiled the raw materials to solvent ratio as 1:30. The optimal temperature and time duration were found to be 80°C and 3.5 h, respectively. The yield of soluble polysaccharides at these specified conditions was 5.42%. Strikingly, the water-soluble polysaccharide from S. cassiae exhibited strong anti-fatigue activity at 100 mg/kg in BALB/c mice. S. cassiae polysaccharide extended the weight-loaded swimming duration in BALB/c mice. In addition, it ameliorated the level of antioxidant enzymes (SOD, GPX) while decreased the blood urea nitrogen, creatine phosphokinase, triglyceride, lactic acid, lactate dehydrogenase, and malondialdehyde levels in blood serum. Moreover, the assessment of the immunomodulatory effect of S. cassia polysaccharides unveiled the enhancement of B-cell and T-cell lymphocytes, denoting the positive effect on physical immunity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiadai An ◽  
Xianying Dai ◽  
Lansheng Feng ◽  
Jieming Zheng

AbstractWe investigated the process parameters of the high temperature MOCVD (HT-MOCVD) numerical model for the AlN growth based on CFD simulation using orthogonal test design. It is believed that high temperature growth condition is favorable for improving efficiency and crystallization quality for AlN film, while the flow field in the HT-MOCVD reactor is closely related to the process parameters, which will affect the uniformity of the film. An independently developed conceptual HT-MOCVD reactor was established for the AlN growth to carry out the CFD simulation. To evaluate the role of the parameters systematically and efficiently on the growth uniformity, the process parameters based on CFD simulation were analyzed using orthogonal test design. The advantages of the range, matrix and variance methods were considered and the results were analyzed comprehensively and the optimal process parameters were obtained as follows, susceptor rotational speed 400 rpm, operating pressure 40 Torr, gas flow rate 50 slm, substrate temperature 1550 K.


2021 ◽  
Author(s):  
jiadai an ◽  
xianying dai ◽  
lansheng feng ◽  
jieming zheng

Abstract We investigated the process parameters of the high temperature MOCVD (HT-MOCVD) numerical model for the AlN growth based on CFD simulation using orthogonal test design. It is believed that high temperature growth condition is favorable for improving efficiency and crystallization quality for AlN film, while the flow field in the HT-MOCVD reactor is closely related to the process parameters, which will affect the uniformity of the film. An independently developed conceptual HT-MOCVD reactor was established for the AlN growth to carry out the CFD simulation. To evaluate the role of the parameters systematically and efficiently on the growth uniformity, the process parameters based on CFD simulation were analyzed using orthogonal test design. The advantages of the range, matrix and variance methods were considered and the results were analyzed comprehensively and the optimal process parameters were obtained as follows, susceptor rotational speed 400 rpm, operating pressure 40 Torr, gas flow rate 50 slm, substrate temperature 1550 K.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Shuolei Huang ◽  
Junda Ren ◽  
Mingguang Li ◽  
Zhuolin Li ◽  
Shuiwen Zhou

In order to prepare a kind of high-performance asphalt pavement pit repair material and extend the service life of the road, this paper starts from the microscopic view of the raw materials, uses infrared spectrum, four component analysis method, lying drop method, column wick technology principle, etc. to select the raw materials and determine the initial amount of the cold patching asphalt mixture, and optimizes the formula through the orthogonal test design and adhesion, cohesion, initial stage strength, later strength, residual stability, and other performance indexes, and determines the final formula of cold patching asphalt mixture as follows: the design porosity is 15 ± 0.5%, compatibilizer is 2.5%, linear SBS modifier is 5%, tackifier is 4%, antistripping agent is 3.5%, and the dosage of diluent D should be determined according to the ambient temperature. The results show that the performance of the self-made cold patching asphalt mixture is good verified by adhesion grade, strength, high temperature stability, water stability, and other road performance.


Sign in / Sign up

Export Citation Format

Share Document