A New Analytical Method for Predicting Dew Point Pressures for Gas Condensate Reservoirs

Author(s):  
Okpo Nnadozie Godwin
2022 ◽  
Author(s):  
Ali H. Alsultan ◽  
Josef R. Shaoul ◽  
Jason Park ◽  
Pacelli L. J. Zitha

Abstract Condensate banking is a major issue in the production operations of gas condensate reservoirs. Increase in liquid saturation in the near-wellbore zone due to pressure decline below dew point, decreases well deliverability and the produced condensate-gas ratio (CGR). This paper investigates the effects of condensate banking on the deliverability of hydraulically fractured wells producing from ultralow permeability (0.001 to 0.1 mD) gas condensate reservoirs. Cases where condensate dropout occurs over a large volume of the reservoir, not only near the fracture face, were examined by a detailed numerical reservoir simulation. A commercial compositional simulator with local grid refinement (LGR) around the fracture was used to quantify condensate dropout as a result of reservoir pressure decline and its impact on well productivity index (PI). The effects of gas production rate and reservoir permeability were investigated. Numerical simulation results showed a significant change in fluid compositions and relative permeability to gas over a large reservoir volume due to pressure decline during reservoir depletion. Results further illustrated the complications in understanding the PI evolution of hydraulically fractured wells in "unconventional" gas condensate reservoirs and illustrate how to correctly evaluate fracture performance in such a situation. The findings of our study and novel approach help to more accurately predict post-fracture performance. They provide a better understanding of the hydrocarbon phase change not only near the wellbore and fracture, but also deep in the reservoir, which is critical in unconventional gas condensate reservoirs. The optimization of both fracture spacing in horizontal wells and well spacing for vertical well developments can be achieved by improving the ability of production engineers to generate more realistic predictions of gas and condensate production over time.


2016 ◽  
Vol 60 ◽  
pp. 258-266 ◽  
Author(s):  
Arash Kamari ◽  
Mehdi Sattari ◽  
Amir H. Mohammadi ◽  
Deresh Ramjugernath

1998 ◽  
Vol 1 (02) ◽  
pp. 134-140 ◽  
Author(s):  
G.D. Henderson ◽  
A. Danesh ◽  
D.H. Tehrani ◽  
S. Al-Shaidi ◽  
J.M. Peden

Abstract High pressure core flood experiments using gas condensate fluids in long sandstone cores have been conducted. Steady-state relative permeability points were measured over a wide range of condensate to gas ratio's (CGR), with the velocity and interfacial tension (IFT) being varied between tests in order to observe the effect on relative permeability. The experimental procedures ensured that the fluid distribution in the cores was representative of gas condensate reservoirs. Hysteresis between drainage and imbibition during the steady-state measurements was also investigated, as was the repeatability of the data. A relative permeability rate effect for both gas and condensate phases was observed, with the relative permeability of both phases increasing with an increase in flow rate. The relative permeability rate effect was still evident as the IFT increased by an order of magnitude, with the relative permeability of the gas phase reducing more than the condensate phase. The influence of end effects was shown to be negligible at the IFT conditions used in the tests, with the Reynolds number indicating that flow was well within the so called laminar regime at all test conditions. The observed rate effect was contrary to that of the conventional non-Darcy flow where the effective permeability should decrease with increasing flow rate. A generalised correlation between relative permeability, velocity and IFT has been proposed, which should be more appropriate for condensing fluids than the conventional correlation. The results highlight the need for appropriate experimental methods and relative permeability relations where the distribution of the phases are representative of those in gas condensate reservoirs. This study will be particularly applicable to the vicinity of producing wells, where the rate effect on gas relative permeability can significantly affect well productivity. The findings provide previously unreported data on relative permeability and recovery of gas condensate fluids at realistic conditions. Introduction During the production of gas condensate reservoirs, the reservoir pressure will be gradually reduced to below the dew-point, giving rise to retrograde condensation. In the vicinity of producing wells where the rate of pressure reduction is greatest, the increase in the condensate saturation from zero is accompanied by a reduction in relative permeability of gas, due to the loss of pore space available to gas flow. It is the perceived effect of this local condensate accumulation on the near wellbore gas and condensate mobility that is one of the main areas of interest for reservoir engineers. The availability of accurate relative permeability data applicable to flow in the wellbore region impacts the management of gas condensate reservoirs.


2021 ◽  
Author(s):  
Abdulelah Nasieef ◽  
Mahmoud Jamiolahmady ◽  
Hosein Doryanidaryuni ◽  
Alejandro Restrepo ◽  
Alonso Ocampo ◽  
...  

Abstract Recovery from gas condensate reservoirs, when the pressure is below dew point pressure (Pdew), is adversely affected by the accumulation of condensate in the near wellbore region. The mitigation of the near-well bore condensate banking is the main purpose of any enhanced recovery method implemented in gas condensate reservoirs. In this work, a new method was tested to improve condensate recovery by using a chemical that was delivered using hydrocarbon gas as a carrier into a very low permeability and very low porosity reservoir rock. Chemicals are typically injected using liquid carrier solvents. The use of hydrocarbon gas as the carrier provides a remedy to mitigate condensate banking in very low permeability cores by minimizing complications associated with low injectivity and back flow clean-up process requirements of an injected liquid. The chemical potential was evaluated by recording production data from unsteady-state coreflood experiments. The injection of the chemical with equilibrated gas resulted in condensate saturation to decrease from 19.6% to 6.5%. This decrease was not instantaneous and took some time to occur indicating that the chemical needs time to interact with the resident fluid and rock. The benefit of the method, at the field scale, was also estimated by performing single-well numerical simulations that use relative permeability (kr) data which history matched the measured coreflood production data. The results of these preliminary simulations also showed improved recovery of gas and condensate compared to pure depletion, without chemical, by around 40% for the cases considered.


2012 ◽  
Vol 616-618 ◽  
pp. 796-803
Author(s):  
Wen Ge Hu ◽  
Xiang Fang Li ◽  
Xin Zhou Yang ◽  
Ke Liu Wu ◽  
Jun Tai Shi

Energy control (i. e. pressure control) has an obvious effect on development effect in the depletion of gas condensate reservoir. Phase change behavior and characteristics of the relative pemeability in gas condensate reservoirs were displayed in this paper, then pressure and condensate distribution were showed through reservoir simulation. Finally, the influence of the pressure drop on condensate distribution and condensate oil production in gas condensate reservoirs with different permeabilities was studied. Results show that: First, in high / moderate permeability gas condensate reservoirs, the pressure and the condensate blocking will extend to further reservoir, while the pressure and condensate just appear in the vicinity of wellbore in low permeability gas condensate reservoirs. Second, the influence of pressure drop on condensate distribution in high permeability gas condensate reservoirs is obvious, the condensate blocking extends with the increasing of the pressure drop, and condensate extent can be controlled by optimizing a rational pressure drop, while the influence is inconspicuous in low permeability gas condensate reservoirs. Third, the influence of pressure drop on condensate oil production in high / moderate permeability gas condensate reservoirs is conspicuous, a rational pressure drop exists, while the influence is indistinct in low permeability or tight gas condensate reservoirs, before the retrograde condensation, a low pressure drop should be adopted in a long term until the bottom hole flowing pressure drops below the dew point pressure, when the condensate blocking forms, well stimulation is advised before developing by pressure control.


1987 ◽  
Vol 27 (1) ◽  
pp. 370
Author(s):  
W.H. Goldthorpe ◽  
J.K. Drohm

Special attention must be paid to the generation of PVT parameters when applying conventional black oil reservoir simulators to the modelling of volatile oil and gas-condensate reservoirs. In such reservoirs phase behaviour is an important phenomenon and common approaches to approximating this, via the black oil PVT representation, introduce errors that may result in prediction of incorrect recoveries of surface gas and condensate. Further, determination of production tubing pressure drops for use in such simulators is also prone to errors. These affect the estimation of well potentials and reservoir abandonment pressures.Calculation of black oil PVT parameters by the method of Coats (1985) is shown to be preferred over conventional approaches, although the PVT parameters themselves lose direct physical meaning. It is essential that a properly tuned equation of state be available for use in conjunction with experimental data.Production forecasting based on simulation output requires further processing in order to translate the black oil surface phase fluxes into products such as sales gas, LPG and condensate. For gas-condensate reservoirs, such post-processing of results from the simulation of depletion or cycling above the dew point is valid. In principle it is invalid for cycling below the dew point but in practice it can still provide useful information.


Sign in / Sign up

Export Citation Format

Share Document