Pore-size Dependence of Fluid Phase Behavior and Properties in Organic-Rich Shale Reservoirs

Author(s):  
Behnaz Rahmani Didar ◽  
I. Yucel Akkutlu
SPE Journal ◽  
2020 ◽  
Vol 25 (03) ◽  
pp. 1406-1415
Author(s):  
Sheng Luo ◽  
Jodie L. Lutkenhaus ◽  
Hadi Nasrabadi

Summary The improved oil recovery (IOR) of unconventional shale reservoirs has attracted much interest in recent years. Gas injection, such as carbon dioxide (CO2) and natural gas, is one of the most considered techniques for its sweep efficiency and effectiveness in low-permeability reservoirs. However, the uncertainties of fluid phase behavior in shale reservoirs pose a great challenge in evaluating the performance of a gas-injection operation. Shale reservoirs typically have macroscale to nanoscale pore-size distribution in the porous space. In fractures and macropores, the fluid shows bulk behavior, but in nanopores, the phase behavior is significantly altered by the confinement effect. The integrated behavior of reservoir fluids in this complex environment remains uncertain. In this study, we investigate the nanoscale pore-size-distribution effect on the phase behavior of reservoir fluids in gas injection for shale reservoirs. A case of Anadarko Basin shale oil is used. The pore-size distribution is discretized as a multiscale system with pores of specific diameters. The phase equilibria of methane injection into the multiscale system are calculated. The constant-composition expansions are simulated for oil mixed with various fractions of injected gas. It is found that fluid in nanopores becomes supercritical with injected gas, but lowering the pressure to less than the bubblepoint turns it into the subcritical state. The bubblepoint is generally lower than the bulk and the degree of deviation depends on the amount of injected gas. The modeling of confined-fluid swelling shows that fluid swelled from nanopores is predicted to contain more oil than the swelled fluid at bulk state.


2019 ◽  
Vol 498 ◽  
pp. 72-85 ◽  
Author(s):  
Sheng Luo ◽  
Bikai Jin ◽  
Jodie L. Lutkenhaus ◽  
Hadi Nasrabadi

Author(s):  
Shangbin Chen ◽  
Chu Zhang ◽  
Xueyuan Li ◽  
Yingkun Zhang ◽  
Xiaoqi Wang

AbstractIn shale reservoirs, the organic pores with various structures formed during the thermal evolution of organic matter are the main storage site for adsorbed methane. However, in the process of thermal evolution, the adsorption characteristics of methane in multi type and multi-scale organic matter pores have not been sufficiently studied. In this study, the molecular simulation method was used to study the adsorption characteristics of methane based on the geological conditions of Longmaxi Formation shale reservoir in Sichuan Basin, China. The results show that the characteristics of pore structure will affect the methane adsorption characteristics. The adsorption capacity of slit-pores for methane is much higher than that of cylindrical pores. The groove space inside the pore will change the density distribution of methane molecules in the pore, greatly improve the adsorption capacity of the pore, and increase the pressure sensitivity of the adsorption process. Although the variation of methane adsorption characteristics of different shapes is not consistent with pore size, all pores have the strongest methane adsorption capacity when the pore size is about 2 nm. In addition, the changes of temperature and pressure during the thermal evolution are also important factors to control the methane adsorption characteristics. The pore adsorption capacity first increases and then decreases with the increase of pressure, and increases with the increase of temperature. In the early stage of thermal evolution, pore adsorption capacity is strong and pressure sensitivity is weak; while in the late stage, it is on the contrary.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1315
Author(s):  
Jingwei Huang ◽  
Hongsheng Wang

Confined phase behavior plays a critical role in predicting production from shale reservoirs. In this work, a pseudo-potential lattice Boltzmann method is applied to directly model the phase equilibrium of fluids in nanopores. First, vapor-liquid equilibrium is simulated by capturing the sudden jump on simulated adsorption isotherms in a capillary tube. In addition, effect of pore size distribution on phase equilibrium is evaluated by using a bundle of capillary tubes of various sizes. Simulated coexistence curves indicate that an effective pore size can be used to account for the effects of pore size distribution on confined phase behavior. With simulated coexistence curves from pore-scale simulation, a modified equation of state is built and applied to model the thermodynamic phase diagram of shale oil. Shifted critical properties and suppressed bubble points are observed when effects of confinement is considered. The compositional simulation shows that both predicted oil and gas production will be higher if the modified equation of state is implemented. Results are compared with those using methods of capillary pressure and critical shift.


Author(s):  
Yapeng Tian ◽  
Binshan Ju ◽  
Xudong Wang ◽  
Hongya Wang ◽  
Jie Hu ◽  
...  

2021 ◽  
Vol 60 (3) ◽  
pp. 1463-1472
Author(s):  
Zhaojie Song ◽  
Yilei Song ◽  
Jia Guo ◽  
Dong Feng ◽  
Jiangbo Dong

Sign in / Sign up

Export Citation Format

Share Document