Wireless Inflow Monitoring in a Subsea Field Development: A Case Study from the Hyme Field, Offshore Mid-Norway

Author(s):  
Svein Mjaaland ◽  
Erlend Gudding ◽  
Christian Andre Andresen
Keyword(s):  
2011 ◽  
Author(s):  
Carey Mills ◽  
Andrew James Marron ◽  
Wolfgang J. Leeb
Keyword(s):  

2020 ◽  
Author(s):  
T. Barling ◽  
M. Paydayesh ◽  
C. Leone ◽  
C. Belguermi ◽  
M. Francis ◽  
...  

2016 ◽  
Vol 19 (03) ◽  
pp. 391-402
Author(s):  
Sunday Amoyedo ◽  
Emmanuel Ekut ◽  
Rasaki Salami ◽  
Liliana Goncalves-Ferreira ◽  
Pascal Desegaulx

Summary This paper presents case studies focused on the interpretation and integration of seismic reservoir monitoring from several fields in conventional offshore and deepwater Niger Delta. The fields are characterized by different geological settings and development-maturity stages. We show different applications varying from qualitative to quantitative use of time-lapse (4D) seismic information. In the first case study, which is in shallow water, the field has specific reservoir-development challenges, simple geology, and is in phased development. On this field, 4D seismic, which was acquired several years ago, is characterized by poor seismic repeatability. Nevertheless, we show that because of improvements from seismic reprocessing, 4D seismic makes qualitative contributions to the ongoing field development. In the second case study, the field is characterized by complex geological settings. The 4D seismic is affected by overburden with strong lateral variations in velocity and steeply dipping structure (up to 40°). Prestack-depth-imaging (PSDM) 4D seismic is used in a more-qualitative manner to monitor gas injection, validate the geologic/reservoir models, optimize infill injector placement, and consequently, enhance field-development economics. The third case study presents a deep offshore field characterized by a complex depositional system for some reservoirs. In this example, good 4D-seismic repeatability (sum of source- and receiver-placement differences between surveys, dS+dR) is achieved, leading to an increased quantitative use of 4D monitoring for the assessment of sand/sand communication, mapping of oil/water (OWC) front, pressure evolution, and dynamic calibration of petro-elastic model (PEM), and also as a seismic-based production-logging tool. In addition, 4D seismic is used to update seismic interpretation, provide a better understanding of internal architecture of the reservoirs units, and, thereby, yield a more-robust reservoir model. The 4D seismic in this field is a key tool for field-development optimization and reservoir management. The last case study illustrates the need for seismic-feasibility studies to detect 4D responses related to production. In addition to assessing the impact of the field environment on the 4D- seismic signal, these studies also help in choosing the optimum seismic-survey type, design, and acquisition parameters. These studies would possibly lead to the adoption of new technologies such as broad-band streamer or nodes acquisition in the near future.


2021 ◽  
Author(s):  
Kumar Nathan ◽  
M Arif Iskandar Ghazali ◽  
M Zahin Abdul Razak ◽  
Ismanto Marsidi ◽  
Jamari M Shah

Abstract Abandonment is considered to be the last stage in the oil gas field cycle. Oil and gas industries around the world are bounded by the necessity of creating an abandonment program which is technically sound, complied to the stringent HSE requirement and to be cost-effective. Abandonment strategies were always planned as early as during the field development plan. When there are no remaining opportunities left or no commercially viable hydrocarbon is present, the field need to be abandoned to save operating and maintenance cost. The cost associated on abandonment can often be paid to the host government periodically and can be cost recoverable once the field is ready to be abandoned. In Malaysia, some of the oil producing fields are now in the late life of production thus abandonment strategies are being studied comprehensively. The interest of this paper is to share the case study of one of a field that is in its late life of production and has wells and facilities that planned to be abandon soon. The abandonment in this field is challenging because it involves two countries, as this field is in the hydrocarbon structure that straddling two countries. Series of techno-commercial discussion were held between operators of these two countries to gain an integrated understanding of the opportunity, defining a successful outcome of the opportunity and creating an aligned plan to achieve successful abandonment campaign. Thus, this paper will discuss on technical aspects of creating a caprock model, the execution strategies of abandoning the wells and facilities and economic analysis to study whether a joint campaign between the operators from two countries yields significantly lower costs or otherwise.


2021 ◽  
pp. 111-126
Author(s):  
A. A. Agarkova ◽  
S. E. Shebankin ◽  
M. A. Tukaev ◽  
M. S. Karmazin

The usual method for constructing a digital model of a field is based on hydrodynamic modeling using the basic implementation of a geological model, usually requires additional adjustments to the initial data, and as a result, leads to a wide range of uncertainties in assessing the predicted technological indicators of field development. The PK1 reservoir of a gas condensate field case study discuss-es the method of iterative modeling, which makes it possible to comprehensively approach the assessment of possible uncertainties.


Sign in / Sign up

Export Citation Format

Share Document