Artificial Lift Strategy Selection Within Field Development Planning (Russian)

Author(s):  
A. V. Alferov ◽  
A. G. Lutfurakhmanov ◽  
K. V. Litvinenko ◽  
S. E. Zdolnik
2015 ◽  
Author(s):  
A. V. Alferov ◽  
A. G. Lutfurakhmanov ◽  
K. V. Litvinenko ◽  
S. E. Zdolnik

Author(s):  
Atheer Dheyauldeen ◽  
Omar Al-Fatlawi ◽  
Md Mofazzal Hossain

AbstractThe main role of infill drilling is either adding incremental reserves to the already existing one by intersecting newly undrained (virgin) regions or accelerating the production from currently depleted areas. Accelerating reserves from increasing drainage in tight formations can be beneficial considering the time value of money and the cost of additional wells. However, the maximum benefit can be realized when infill wells produce mostly incremental recoveries (recoveries from virgin formations). Therefore, the prediction of incremental and accelerated recovery is crucial in field development planning as it helps in the optimization of infill wells with the assurance of long-term economic sustainability of the project. Several approaches are presented in literatures to determine incremental and acceleration recovery and areas for infill drilling. However, the majority of these methods require huge and expensive data; and very time-consuming simulation studies. In this study, two qualitative techniques are proposed for the estimation of incremental and accelerated recovery based upon readily available production data. In the first technique, acceleration and incremental recovery, and thus infill drilling, are predicted from the trend of the cumulative production (Gp) versus square root time function. This approach is more applicable for tight formations considering the long period of transient linear flow. The second technique is based on multi-well Blasingame type curves analysis. This technique appears to best be applied when the production of parent wells reaches the boundary dominated flow (BDF) region before the production start of the successive infill wells. These techniques are important in field development planning as the flow regimes in tight formations change gradually from transient flow (early times) to BDF (late times) as the production continues. Despite different approaches/methods, the field case studies demonstrate that the accurate framework for strategic well planning including prediction of optimum well location is very critical, especially for the realization of the commercial benefit (i.e., increasing and accelerating of reserve or assets) from infilled drilling campaign. Also, the proposed framework and findings of this study provide new insight into infilled drilling campaigns including the importance of better evaluation of infill drilling performance in tight formations, which eventually assist on informed decisions process regarding future development plans.


2016 ◽  
Vol 56 (1) ◽  
pp. 29 ◽  
Author(s):  
Neil Tupper ◽  
Eric Matthews ◽  
Gareth Cooper ◽  
Andy Furniss ◽  
Tim Hicks ◽  
...  

The Waitsia Field represents a new commercial play for the onshore north Perth Basin with potential to deliver substantial reserves and production to the domestic gas market. The discovery was made in 2014 by deepening of the Senecio–3 appraisal well to evaluate secondary reservoir targets. The well successfully delineated the extent of the primary target in the Upper Permian Dongara and Wagina sandstones of the Senecio gas field but also encountered a combination of good-quality and tight gas pay in the underlying Lower Permian Kingia and High Cliff sandstones. The drilling of the Waitsia–1 and Waitsia–2 wells in 2015, and testing of Senecio-3 and Waitsia-1, confirmed the discovery of a large gas field with excellent flow characteristics. Wireline log and pressure data define a gross gas column in excess of 350 m trapped within a low-side fault closure that extends across 50 km2. The occurrence of good-quality reservoir in the depth interval 3,000–3,800 m is diagenetically controlled with clay rims inhibiting quartz cementation and preserving excellent primary porosity. Development planning for Waitsia has commenced with the likelihood of an early production start-up utilising existing wells and gas processing facilities before ramp-up to full-field development. The dry gas will require minimal processing, and access to market is facilitated by the Dampier–Bunbury and Parmelia gas pipelines that pass directly above the field. The Waitsia Field is believed to be the largest conventional Australian onshore discovery for more than 30 years and provides impetus and incentive for continued exploration in mature and frontier basins. The presence of good-quality reservoir and effective fault seal was unexpected and emphasise the need to consider multiple geological scenarios and to test unorthodox ideas with the drill bit.


2021 ◽  
Author(s):  
Qasem Dashti ◽  
Saad Matar ◽  
Hanan Abdulrazzaq ◽  
Nouf Al-Shammari ◽  
Francy Franco ◽  
...  

Abstract A network modeling campaign for 15 surface gathering centers involving more than 1800 completion strings has helped to lay out different risks on the existing surface pipeline network facility and improved the screening of different business and action plans for the South East Kuwait (SEK) asset of Kuwait Oil Company. Well and network hydraulic models were created and calibrated to support engineers from field development, planning, and operations teams in evaluating the hydraulics of the production system for the identification of flow assurance problems and system optimization opportunities. Steady-state hydraulic models allowed the analysis of the integrated wells and surface network under multiple operational scenarios, providing an important input to improve the planning and decision-making process. The focus of this study was not only in obtaining an accurate representation of the physical dimension of well and surface network elements, but also in creating a tool that includes standard analytical workflows able to evaluate wells and surface network behavior, thus useful to provide insightful predictive capability and answering the business needs on maintaining oil production and controlling unwanted fluids such as water and gas. For this reason, the model needs to be flexible enough in covering different network operating conditions. With the hydraulic models, the evaluation and diagnosis of the asset for operational problems at well and network level will be faster and more effective, providing reliable solutions in the short- and long-terms. The hydraulic models enable engineers to investigate multiple scenarios to identify constraints and improve the operations performance and the planning process in SEK, with a focus on optimal operational parameters to establish effective wells drawdown, evaluation of artificial lifting requirements, optimal well segregation on gathering centers headers, identification of flow assurance problems and supporting production forecasts to ensure effective production management.


2020 ◽  
Author(s):  
R. Bordas ◽  
J.R. Heritage ◽  
M.A. Javed ◽  
G. Peacock ◽  
T. Taha ◽  
...  

2021 ◽  
Author(s):  
Nasser AlAskari ◽  
Muhamad Zaki ◽  
Ahmed AlJanahi ◽  
Hamed AlGhadhban ◽  
Eyad Ali ◽  
...  

Abstract Objectives/Scope: The Magwa and Ostracod formations are tight and highly fractured carbonate reservoirs. At shallow depth (1600-1800 ft) and low stresses, wide, long and conductive propped fracture has proven to be the most effective stimulation technique for production enhancement. However, optimizing flow of the medium viscosity oil (17-27 API gravity) was a challenge both at initial phase (fracture fluid recovery and proppant flowback risks) and long-term (depletion, increasing water cut, emulsion tendency). Methods, Procedures, Process: Historically, due to shallow depth, low reservoir pressure and low GOR, the optimum artificial lift method for the wells completed in the Magwa and Ostracod reservoirs was always sucker-rod pumps (SRP) with more than 300 wells completed to date. In 2019 a pilot re-development project was initiated to unlock reservoir potential and enhance productivity by introducing a massive high-volume propped fracturing stimulation that increased production rates by several folds. Consequently, initial production rates and drawdown had to be modelled to ensure proppant pack stability. Long-term artificial lift (AL) design was optimized using developed workflow based on reservoir modelling, available post-fracturing well testing data and production history match. Results, Observations, Conclusions: Initial production results, in 16 vertical and slanted wells, were encouraging with an average 90 days production 4 to 8 times higher than of existing wells. However, the initial high gas volume and pressure is not favourable for SRP. In order to manage this, flexible AL approach was taken. Gas lift was preferred in the beginning and once the production falls below pre-defined PI and GOR, a conversion to SRP was done. Gas lift proved advantageous in handling solids such as residual proppant and in making sure that the well is free of solids before installing the pump. Continuous gas lift regime adjustments were taken to maximize drawdown. Periodical FBHP surveys were performed to calibrate the single well model for nodal analysis. However, there limitations were present in terms of maximizing the drawdown on one side and the high potential of forming GL induced emulsion on the other side. Horizontal wells with multi-stage fracturing are common field development method for such tight formations. However, in geological conditions of shallow and low temperature environment it represented a significant challenge to achieve fast and sufficient fracture fluid recovery by volume from multiple fractures without deteriorating the proppant pack stability. This paper outlines local solutions and a tailored workflow that were taken to optimize the production performance and give the brown field a second chance. Novel/Additive Information: Overcoming the different production challenges through AL is one of the keys to unlock the reservoir potential for full field re-development. The Magwa and Ostracod formations are unique for stimulation applications for shallow depth and range of reservoirs and fracture related uncertainties. An agile and flexible approach to AL allowed achieving the full technical potential of the wells and converted the project to a field development phase. The lessons learnt and resulting workflow demonstrate significant value in growing AL projects in tight and shallow formations globally.


Sign in / Sign up

Export Citation Format

Share Document