Estimation of Optimal Frac Design Parameters for Asymmetric Hydraulic Fractures as a Result of Interacting Hydraulic and Natural Fractures - Application to the Eagle Ford

Author(s):  
M. Paryani ◽  
S. Poludasu ◽  
D. Sia ◽  
A. Bachir ◽  
A. Ouenes
2021 ◽  
Author(s):  
Clay Kurison ◽  
Ahmed M. Hakami ◽  
Sadi H. Kuleli

Abstract Unconventional shale reservoirs are characterized by low porosity and ultra-low permeability. Natural fractures are known to be present and considered a critical factor for the enhanced post-stimulation productivity. Accounting for natural fractures with existing techniques has not been widely adopted owing to their complexity or lack of validation. Ongoing research efforts are striving to understand how natural fractures can be accounted for and accurately modeled in fluid flow of the subject reservoirs. This study utilized Eagle Ford well data comprising reservoir properties, stimulation metrics, production, microseismicity and permeability measurements from a core plug. The methodology comprised use of production data to extract a linear flow regime parameter. This was coupled with fracture geometry, predicted from hydraulic fracture modeling and microseismicity, to estimate the system permeability. From interpreting microseismic events as slips on critically stressed natural fractures, explicit modeling incorporating a discrete fracture network (DFN) assumed activated natural fractures supplement conductive reservoir contact area. Thus, allowed the estimation of matrix permeability. For validation, the aforementioned was compared with core plug permeability measurements. Results from modeling of planar hydraulic fractures, with microseismicity as validation, predicted planar fracture geometry which when coupled with the linear flow parameter resulted in a system permeability. Incorporation of DFNs to account for activated natural fractures yielded matrix permeability in picodarcy range. A review of laboratory permeability measurements exhibited stress dependence with the value at the maximum experimental confining pressure of 4000 psi in the same range as the computed system permeability. However, the confining pressures used in the experiments were less than the in situ effective stress. Correction for representative stress yielded an ultra-low matrix permeability in the same range as the DFN-based picodarcy matrix permeability. Thus, supporting the adopted drainage architecture and often suggested role of natural fractures in shale reservoir fluid flow. This study presents a multi-discipline workflow to account for natural fractures, and contributes to understanding that will improve laboratory petrophysics and the overall reservoir characterization of the subject reservoirs. Given that the Eagle Ford is an analogue of emerging shales elsewhere, results from this study can be widely adopted.


2015 ◽  
Vol 3 (3) ◽  
pp. SU71-SU88 ◽  
Author(s):  
Yamina E. Aimene ◽  
Ahmed Ouenes

We have developed a new geomechanical workflow to study the mechanics of hydraulic fracturing in naturally fractured unconventional reservoirs. This workflow used the material point method (MPM) for computational mechanics and an equivalent fracture model derived from continuous fracture modeling to represent natural fractures (NFs). We first used the workflow to test the effect of different stress anisotropies on the propagation path of a single NF intersected by a hydraulic fracture. In these elementary studies, increasing the stress anisotropy was found to decrease the curving of a propagating NF, and this could be used to explain the observed trends in the microseismic data. The workflow was applied to Marcellus and Eagle Ford wells, where multiple geomechanical results were validated with microseismic data and tracer tests. Application of the workflow to a Marcellus well provides a strain field that correlates well with microseismicity, and a maximum energy release rate, or [Formula: see text] integral at each completion stage, which appeared to correlate to the production log and could be used to quantify the impact of skipping the completion stages. On the first of two Eagle Ford wells considered, the MPM workflow provided a horizontal differential stress map that showed significant variability imparted by NFs perturbing the regional stress field. Additionally, a map of the strain distribution after stimulating the well showed the same features as the interpreted microseismic data: three distinct regions of microseismic character, supported by tracer tests and explained by the MPM differential stress map. Finally, the workflow was able to estimate, in the second well with no microseismic data, its main performance characteristics as validated by tracer tests. The field-validated MPM geomechanical workflow is a powerful tool for completion optimization in the presence of NFs, which affect in multiple ways the final outcome of hydraulic fracturing.


2021 ◽  
Author(s):  
Justin Allison ◽  
Glyn Roberts ◽  
Brad Hicks Hicks ◽  
Todd Lilly

Abstract Fracture treatments and stage designs for new wells have evolved considerably over the past decade contributingto significant production growth. For example, in the acreage discussed hererecently used higher intensity fracturing methods provided an ~80% increase in recovery rates compared with legacy wells. Older wells completed originally with less efficient techniques can also benefit from these more up-to-date designs and treatments using re-fracturing methods. These offer the prospect of economically boosting production in appropriately selected wells. While adding in-fill wells has often been favored by Operators as a lowerrisk option the number of wells being re-fractured has grown every year for the last decade. In this case study two adjacent Eagle Ford wells, comprising a newly completed and a re-fractured well, allow both methods to be considered and compared. Completion design and fracture treatment effectiveness are evaluated using the uniformity of proppant distribution at cluster and stage level as the primary measure. Perforation erosion measurements from downhole video footage is used as the main diagnostic. Novel data acquisition methods combined with successful well preparation provided comprehensive and high-quality datasets. The subsequent proppant distribution analysis for the two wells provides the highest confidence results presented to date. Clear, repeatable trends in distribution are observed and these are compared across multiple stage designs for both the newly completed and re-fractured well. Variations in design parameters and how these effects distribution and ultimately recovery are discussed. These include changes to perforation count per cluster, cluster spacing, cluster count per stage, stage length, perforation charge size and treatment rates and volumes. As a final consideration production records for the evaluated wells are also discussed. Historical industry data shows that the number of wells being re-fractured increases relative to the number of newly drilled wells being completed during periods of low oil and gas prices. With the industry again facing harsh economic realities an increasing number of decisions will be made on whether new or refractured wells, or a combination of both, provide the best solution to replace otherwise inevitable production decline. This paper attempts to provide a detailed understanding of how proppant distribution, as a significant factor in production for hydraulically fractured wells, can be evaluated and considered in these decisions.


2019 ◽  
Vol 10 (4) ◽  
pp. 1613-1634 ◽  
Author(s):  
Oladoyin Kolawole ◽  
Ion Ispas

Abstract Hydraulic fracturing treatment is one of the most efficient conventional matrix stimulation techniques currently utilized in the petroleum industry. However, due to the spatiotemporal complex nature of fracture propagation in a naturally- and often times systematically fractured media, the influence of natural fractures (NF) and in situ stresses on hydraulic fracture (HF) initiation and propagation within a reservoir during the hydrofracturing process remains an important issue. Over the past 50 years of advances in the understanding of HF–NF interactions, no comprehensive revision of the state of the knowledge exists. Here, we reviewed over 140 scientific articles on investigations of HF–NF interactions, published over the past 50 years. We highlight the most commonly observed HF–NF interactions and their implications for unconventional oil and gas production. Using observational and quantitative analyses, we find that numerical modeling and simulation is the most prominent method of approach, whereas there are less publications on the experimental approach, and analytical method is the least utilized approach. Further, we suggest how HF–NF interactions can be monitored in real time on the field during a pre-frac test. Lastly, based on the results of our literature review, we recommend promising areas of investigation that may provide more profound insights into HF–NF interactions in such a way that can be directly applied to the optimization of fracture-stimulation field operations.


2020 ◽  
pp. 014459872096083
Author(s):  
Yulong Liu ◽  
Dazhen Tang ◽  
Hao Xu ◽  
Wei Hou ◽  
Xia Yan

Macrolithotypes control the pore-fracture distribution heterogeneity in coal, which impacts stimulation via hydrofracturing and coalbed methane (CBM) production in the reservoir. Here, the hydraulic fracture was evaluated using the microseismic signal behavior for each macrolithotype with microfracture imaging technology, and the impact of the macrolithotype on hydraulic fracture initiation and propagation was investigated systematically. The result showed that the propagation types of hydraulic fractures are controlled by the macrolithotype. Due to the well-developed natural fracture network, the fracture in the bright coal is more likely to form the “complex fracture network”, and the “simple” case often happens in the dull coal. The hydraulic fracture differences are likely to impact the permeability pathways and the well productivity appears to vary when developing different coal macrolithtypes. Thus, considering the difference of hydraulic fracture and permeability, the CBM productivity characteristics controlled by coal petrology were simulated by numerical simulation software, and the rationality of well pattern optimization factors for each coal macrolithotype was demonstrated. The results showed the square well pattern is more suitable for dull coal and semi-dull coal with undeveloped natural fractures, while diamond and rectangular well pattern is more suitable for semi-bright coal and bright coal with more developed natural fractures and more complex fracturing fracture network; the optimum wells spacing of bright coal and semi-bright coal is 300 m and 250 m, while that of semi-dull coal and dull coal is just 200 m.


Sign in / Sign up

Export Citation Format

Share Document