A Petrophysical Case Study of La Luna Unconventional Source Rock in Maracaibo Basin in Absence of Core and Geochemical Data

2016 ◽  
Author(s):  
H. Aharipour ◽  
Y. Siciliano
2015 ◽  
Vol 45 (suppl 1) ◽  
pp. 41-61 ◽  
Author(s):  
José Alejandro Méndez Dot ◽  
José Méndez Baamonde ◽  
Dayana Reyes ◽  
Rommel Whilchy

ABSTRACTCarbonates of Cogollo Group (Apón, Lisure and Maraca formations) constitute the broader calcareous platform system originated during Aptian and Albian of Cretaceous in north-western South America, Maracaibo Basin, Venezuela. On the shallow shelf, a variety of calcareous sedimentary facies were deposited during marine transgressive and regressive cycles. Some of them developed porosity and constitute important hydrocarbon reservoirs. Due to some major marine transgressions, from early Aptian, the anoxic environment and characteristic facies of a pelagic environment moved from the outer slope and basin to the shallow shelf, during specific time intervals, favouring the sedimentation of organic matter-rich facies, which correspond to the oceanic anoxic events (OAEs) 1a and 1b. The source rock of Machiques Member (Apón Formation) was deposited during early Aptian OAE 1a (~ 120 Ma). The source rock of Piché Member, located at the top of the Apón Formation, was deposited during late Aptian OAE 1b (~ 113 Ma). Finally, La Luna Formation, from Cenomanian, that covers the OAE 2 (~ 93 Ma), represents the most important source rock in the Maracaibo Basin. In this way and based on sedimentological and organic geochemistry results from the determinations performed on 247 samples belonging to six cores in the Maracaibo Basin, we propose these two organic-rich levels, deposited on the shallow shelf of the Cogollo Group, as "effective source rocks", additional to La Luna Formation, with oil migration in relatively small distances to the porosity facies.


2017 ◽  
Author(s):  
C. Lobo ◽  
A. Molina ◽  
A. Faraco ◽  
J. Mendez ◽  
J. Delgadillo ◽  
...  

2021 ◽  
Vol 14 (10) ◽  
Author(s):  
Ahmed M. Elatrash ◽  
Mohammad A. Abdelwahhab ◽  
Hamdalla A. Wanas ◽  
Samir I. El-Naggar ◽  
Hasan M. Elshayeb

2010 ◽  
Vol 4 (1-2) ◽  
pp. 239-247 ◽  
Author(s):  
Emmanuel A. Ariyibi ◽  
Samuel L. Folami ◽  
Bankole D. Ako ◽  
Taye R. Ajayi ◽  
Adebowale O. Adelusi

2021 ◽  
Vol 11 (17) ◽  
pp. 7875
Author(s):  
Vincenzo Sapia ◽  
Valerio Materni ◽  
Federico Florindo ◽  
Marco Marchetti ◽  
Andrea Gasparini ◽  
...  

A multi-parametric approach that involves the use of different geophysical methods coupled with geochemical data allowed us to identify undiscovered archeological burials in a funerary area of the Grotte di Castro Etruscan settlement. In particular, we tested the suitability of the capacitive resistivity method and the presence of Radon in soil for the identification of burials calibrating their outcomes over coincident survey profiles with standard geophysical techniques routinely applied for archaeological prospections. Soil Radon data were acquired both in a grid and along a profile to highlight anomalous gas concentrations, whereas electrical resistivity and ground-penetrating radar measurements were conducted on overlapping profiles to depict the electrical and electromagnetic subsurface distribution. Data integration showed a series of anomalies, suggesting the presence of multiple burials starting from a depth of approximately 1.5 m below the terrain surface. Slight anomalies of Radon in the soil were found to correspond to most of the recovered geophysical ones. Our results pointed out the effectiveness of geophysical method integration in archeological prospecting with the novelty of the joint use of Radon in soil measurements and capacitive resistivity tomography. The latter provided reliable results and can be considered as a standalone technique in archaeological surveys.


Sign in / Sign up

Export Citation Format

Share Document