scholarly journals Bulk and Surface Aqueous Speciation of Calcite: Implications for Low-Salinity Waterflooding of Carbonate Reservoirs

SPE Journal ◽  
2017 ◽  
Vol 23 (01) ◽  
pp. 84-101 ◽  
Author(s):  
Maxim P. Yutkin ◽  
Himanshu Mishra ◽  
Tadeusz W. Patzek ◽  
John Lee ◽  
Clayton J. Radke

Summary Low-salinity waterflooding (LSW) is ineffective when reservoir rock is strongly water-wet or when crude oil is not asphaltenic. Success of LSW relies heavily on the ability of injected brine to alter surface chemistry of reservoir crude-oil brine/rock (COBR) interfaces. Implementation of LSW in carbonate reservoirs is especially challenging because of high reservoir-brine salinity and, more importantly, because of high reactivity of the rock minerals. Both features complicate understanding of the COBR surface chemistries pertinent to successful LSW. Here, we tackle the complex physicochemical processes in chemically active carbonates flooded with diluted brine that is saturated with atmospheric carbon dioxide (CO2) and possibly supplemented with additional ionic species, such as sulfates or phosphates. When waterflooding carbonate reservoirs, rock equilibrates with the injected brine over short distances. Injected-brine ion speciation is shifted substantially in the presence of reactive carbonate rock. Our new calculations demonstrate that rock-equilibrated aqueous pH is slightly alkaline quite independent of injected-brine pH. We establish, for the first time, that CO2 content of a carbonate reservoir, originating from CO2-rich crude oil and gas, plays a dominant role in setting aqueous pH and rock-surface speciation. A simple ion-complexing model predicts the calcite-surface charge as a function of composition of reservoir brine. The surface charge of calcite may be positive or negative, depending on speciation of reservoir brine in contact with the calcite. There is no single point of zero charge; all dissolved aqueous species are charge determining. Rock-equilibrated aqueous composition controls the calcite-surface ion-exchange behavior, not the injected-brine composition. At high ionic strength, the electrical double layer collapses and is no longer diffuse. All surface charges are located directly in the inner and outer Helmholtz planes. Our evaluation of calcite bulk and surface equilibria draws several important inferences about the proposed LSW oil-recovery mechanisms. Diffuse double-layer expansion (DLE) is impossible for brine ionic strength greater than 0.1 molar. Because of rapid rock/brine equilibration, the dissolution mechanism for releasing adhered oil is eliminated. Also, fines mobilization and concomitant oil release cannot occur because there are few loose fines and clays in a majority of carbonates. LSW cannot be a low-interfacial-tension alkaline flood because carbonate dissolution exhausts all injected base near the wellbore and lowers pH to that set by the rock and by formation CO2. In spite of diffuse double-layer collapse in carbonate reservoirs, surface ion-exchange oil release remains feasible, but unproved.

2016 ◽  
Vol 19 (01) ◽  
pp. 142-162 ◽  
Author(s):  
Aboulghasem Kazemi Korrani ◽  
Gary R. Jerauld ◽  
Kamy Sepehrnoori

Summary Low-salinity waterflooding is an emerging enhanced-oil-recovery (EOR) technique in which the salinity of the injected water is substantially reduced to improve oil recovery over conventional higher-salinity waterflooding. Although there are many low-salinity experimental results reported in the literature, publications on modeling this process are rare. Although there remains some debate regarding the mechanisms of low salinity waterflooding process (LoSal EOR®)*, the geochemical reactions that control the wetting of crude oil on the rock are likely to be central to a detailed description of the process. Because no comprehensive geochemical-based modeling has been applied in this area, it was decided to couple a state-of-the-art geochemical package, IPhreeqc (Charlton and Parkhurst 2011), developed by the US Geological Survey, with UTCOMP (Chang 1990), the compositional reservoir simulator developed by The University of Texas at Austin. A step-by-step algorithm is presented for integrating IPhreeqc with UTCOMP. Through this coupling, we are able to simulate homogeneous and heterogeneous (mineral dissolution/precipitation), irreversible, and ion-exchange reactions under nonisothermal, nonisobaric, and both local-equilibrium (away from the wellbore) and kinetic (near wellbore) conditions. Consistent with the literature, there are significant effects of water-soluble hydrocarbon components—e.g., carbon dioxide (CO2), methane (CH4), and acidic/basic components of the crude—on buffering the aqueous pH value and more generally, on the crude oil, brine, and rock reactions. Thermodynamic constraints are used to explicitly include the effect of these water-soluble hydrocarbon components. Hence, this combines the geochemical power of IPhreeqc with the important aspects of hydrocarbon flow and compositional effects to produce a robust, flexible, and accurate integrated tool capable of including the reactions needed to mechanistically model low-salinity waterflooding. Different geochemical-based approaches to modeling wettability change in sandstones (e.g., interpolation on the basis of total ionic strength and multicomponent ion exchange through surface complexation of the organometallic components) were implemented in UTCOMP-IPhreeqc, and the integrated tool is then used to match and interpret a low-salinity experiment published by Kozaki (2012) and the field trial performed by BP at the Endicott field.


1993 ◽  
Vol 97 (32) ◽  
pp. 8524-8530 ◽  
Author(s):  
J. A. Manzanares ◽  
W. D. Murphy ◽  
S. Mafe ◽  
H. Reiss

1973 ◽  
Vol 61 (5) ◽  
pp. 655-668 ◽  
Author(s):  
Kung-Ming Jan ◽  
Shu Chien

The effects of ionic strength and cationic valency of the fluid medium on the surface potential and dextran-induced aggregation of red blood cells (RBC's) were investigated. The zeta potential was calculated from cell mobility in a microelectrophoresis apparatus; the degree of aggregation of normal and neuraminidase-treated RBC's in dextrans (Dx 40 and Dx 80) was quantified by microscopic observation, measurement of erythrocyte sedimentation rate, and determination of low-shear viscosity. A decrease in ionic strength caused a reduction in aggregation of normal RBC's in dextrans, but had no effect on the aggregation of neuraminidase-treated RBC's. These findings reflect an increase in electrostatic repulsive force between normal RBC's by the reduction in ionic strength due to (a) a decrease in the screening of surface charge by counter-ions and (b) an increase in the thickness of the electric double layer. Divalent cations (Ca++, Mg++, and Ba++) increased aggregation of normal RBC's in dextrans, but had no effect on the aggregation of neuraminidase-treated RBC's. These effects of the divalent cations are attributable to a decrease in surface potential of normal RBC's and a shrinkage of the electric double layer. It is concluded that the surface charge of RBC's plays a significant role in cell-to-cell interactions.


Sign in / Sign up

Export Citation Format

Share Document