Improved Oil Recovery in Tight Oil Formations: Results of Water Injection Operations and Gas Injection Sensitivities in the Bakken Formation of Southeast Saskatchewan

Author(s):  
S. M. Ghaderi ◽  
C. R. Clarkson ◽  
A. Ghanizadeh ◽  
K. Barry ◽  
R. Fiorentino
Author(s):  
Moyosore, Olanipekun ◽  
Akpabio, Julius U. ◽  
Isehunwa, Sunday O.

Fluid-flood and other improved oil recovery techniques are becoming prominent in global petroleum production because a large proportion of production is from mature oil fields. Although water flooding and gas injection are well established techniques in the industry, several of the screening criteria in literature are discipline which could sometimes be subjective. This work used experimental design techniques to develop proxy models for predicting oil recovery under water-flood and gas-flood conditions. The objective of the study is to develop a quantitative screening method that would allow for candidates to be evaluated and ranked for water flood or gas injection. The model was applied to some field cases and compared with published models and the well-known Welge Analysis method. The coefficient constants for the oil formation volume factor for water flooding and gas injection was 0.0139 and 0.0434 respectively. Similarly, the coefficient constants for water injection and gas injection for the generated proxy model was -2.34* 10-8 and -6.1 *10-5 respectively. The results show that the proxy models developed are quite robust and can be used for first pass screening of water and gas flood candidates. 


2016 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
H. Karimaie ◽  
O. Torsæter

The purpose of the three experiments described in this paper is to investigate the efficiency of secondary andtertiary gas injection in fractured carbonate reservoirs, focusing on the effect of equilibrium gas,re-pressurization and non-equilibrium gas. A weakly water-wet sample from Asmari limestone which is the mainoil producing formation in Iran, was placed vertically in a specially designed core holder surrounded withfracture. The unique feature of the apparatus used in the experiment, is the capability of initializing the samplewith live oil to obtain a homogeneous saturation and create the fracture around it by using a special alloy whichis easily meltable. After initializing the sample, the alloy can be drained from the bottom of the modified coreholder and create the fracture which is filled with live oil and surrounded the sample. Pressure and temperaturewere selected in the experiments to give proper interfacial tensions which have been measured experimentally.Series of secondary and tertiary gas injection were carried out using equilibrium and non-equilibrium gas.Experiments have been performed at different pressures and effect of reduction of interfacial tension werechecked by re-pressurization process. The experiments showed little oil recovery due to water injection whilesignificant amount of oil has been produced due to equilibrium gas injection and re-pressurization. Results alsoreveal that CO2 injection is a very efficient recovery method while injection of C1 can also improve the oilrecovery.


2011 ◽  
Vol 91 (1) ◽  
pp. 101-121 ◽  
Author(s):  
Mehran Sohrabi ◽  
Nor Idah Kechut ◽  
Masoud Riazi ◽  
Mahmoud Jamiolahmady ◽  
Shaun Ireland ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document