scholarly journals Development of Proxy Models for Screening Water Flood and Gas Flood Candidates

Author(s):  
Moyosore, Olanipekun ◽  
Akpabio, Julius U. ◽  
Isehunwa, Sunday O.

Fluid-flood and other improved oil recovery techniques are becoming prominent in global petroleum production because a large proportion of production is from mature oil fields. Although water flooding and gas injection are well established techniques in the industry, several of the screening criteria in literature are discipline which could sometimes be subjective. This work used experimental design techniques to develop proxy models for predicting oil recovery under water-flood and gas-flood conditions. The objective of the study is to develop a quantitative screening method that would allow for candidates to be evaluated and ranked for water flood or gas injection. The model was applied to some field cases and compared with published models and the well-known Welge Analysis method. The coefficient constants for the oil formation volume factor for water flooding and gas injection was 0.0139 and 0.0434 respectively. Similarly, the coefficient constants for water injection and gas injection for the generated proxy model was -2.34* 10-8 and -6.1 *10-5 respectively. The results show that the proxy models developed are quite robust and can be used for first pass screening of water and gas flood candidates. 

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiang Li ◽  
Yuan Cheng ◽  
Wulong Tao ◽  
Shalake Sarulicaoketi ◽  
Xuhui Ji ◽  
...  

The production of a low permeability reservoir decreases rapidly by depletion development, and it needs to supplement formation energy to obtain stable production. Common energy supplement methods include water injection and gas injection. Nitrogen injection is an economic and effective development method for specific reservoir types. In order to study the feasibility and reasonable injection parameters of nitrogen injection development of fractured reservoir, this paper uses long cores to carry out displacement experiment. Firstly, the effects of water injection and nitrogen injection development of a fractured reservoir are compared through experiments to demonstrate the feasibility of nitrogen injection development of the fractured reservoir. Secondly, the effects of gas-water alternate displacement after water drive and gas-water alternate displacement after gas drive are compared through experiments to study the situation of water injection or gas injection development. Finally, the reasonable parameters of nitrogen gas-water alternate injection are optimized by orthogonal experimental design. Results show that nitrogen injection can effectively enhance oil production of the reservoir with natural fractures in early periods, but gas channeling easily occurs in continuous nitrogen flooding. After water flooding, gas-water alternate flooding can effectively reduce the injection pressure and improve the reservoir recovery, but the time of gas-water alternate injection cannot be too late. It is revealed that the factors influencing the nitrogen-water alternative effect are sorted from large to small as follows: cycle injected volume, nitrogen and water slug ratio, and injection rate. The optimal cycle injected volume is around 1 PV, the nitrogen and water slug ratio is between 1 and 2, and the injection rate is between 0.1 and 0.2 mL/min.


2009 ◽  
Vol 49 (1) ◽  
pp. 453
Author(s):  
Pavel Bedrikovetsky ◽  
Mohammad Afiq ab Wahab ◽  
Gladys Chang ◽  
Antonio Luiz Serra de Souza ◽  
Claudio Alves Furtado

Injectivity formation damage with water-flooding using sea/produced water has been widely reported in the North Sea, the Gulf of Mexico and the Campos Basin in Brazil. The damage is due to the capture of solid/liquid particles by the rock with consequent permeability decline; it is also due to the formation of a low permeable external filter cake. Yet, moderate injectivity decline is not too damaging with long horizontal injectors where the initial injectivity is high. In this case, injection of raw or poorly treated water would save money on water treatment, which is not only cumbersome but also an expensive procedure in offshore projects. In this paper we investigate the effects of injected water quality on waterflooding using horizontal wells. It was found that induced injectivity damage results in increased sweep efficiency. The explanation of the phenomenon is as follows: injectivity rate is distributed along a horizontal well non-uniformly; water advances faster from higher rate intervals resulting in early breakthrough; the retained particles plug mostly the high permeability channels and homogenise the injectivity profile along the well. An analytical model for injectivity decline accounting for particle capture and a low permeable external filter cake formation has been implemented into the Eclipse 100 reservoir simulator. It is shown that sweep efficiency in a heterogeneous formation can increase by up to 5% after one pore volume injected, compared to clean water injection.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3043
Author(s):  
Fabio Bordeaux-Rego ◽  
Jose Adriano Ferreira ◽  
Claudio Alberto Salinas Tejerina ◽  
Kamy Sepehrnoori

Waterflooding remains the most commonly used method to improve oil recovery. Although the injected brine type is mainly dependent on its availability, few of its characteristics can be controlled during project design. Published laboratory work indicates that the adjustment of injected brine composition can cause an increase in oil production by wettability alteration. This research objective is to propose a novel four-step framework for modeling improved oil recovery by Engineered Water Injection from laboratory to numerical simulation for carbonate formations. We use a geochemical-based model that estimates contact angles to predict wettability alteration. The steps are (1) screening criteria, (2) geochemical evaluation, (3) wettability alteration modeling, and (4) coreflood history-match. We validate our framework by conducting history-match simulations of Brazilian Pre-Salt corefloods. Incremental oil recovery factors are between 5 to 11%, consistent with those reported during experiments. The reduction in residual oil saturation varied from 3 to 5%. This work is a new systematic procedure to model oil recovery using a comprehensive approach that is fundamental to understanding the underlying wettability alteration mechanisms by Engineered Water Injection.


2005 ◽  
Author(s):  
Frederic Maubeuge ◽  
Danielle Christine Morel ◽  
Jean-Pierre Charles Fossey ◽  
Said Hunedi ◽  
Jacques Albert Danquigny

2016 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
H. Karimaie ◽  
O. Torsæter

The purpose of the three experiments described in this paper is to investigate the efficiency of secondary andtertiary gas injection in fractured carbonate reservoirs, focusing on the effect of equilibrium gas,re-pressurization and non-equilibrium gas. A weakly water-wet sample from Asmari limestone which is the mainoil producing formation in Iran, was placed vertically in a specially designed core holder surrounded withfracture. The unique feature of the apparatus used in the experiment, is the capability of initializing the samplewith live oil to obtain a homogeneous saturation and create the fracture around it by using a special alloy whichis easily meltable. After initializing the sample, the alloy can be drained from the bottom of the modified coreholder and create the fracture which is filled with live oil and surrounded the sample. Pressure and temperaturewere selected in the experiments to give proper interfacial tensions which have been measured experimentally.Series of secondary and tertiary gas injection were carried out using equilibrium and non-equilibrium gas.Experiments have been performed at different pressures and effect of reduction of interfacial tension werechecked by re-pressurization process. The experiments showed little oil recovery due to water injection whilesignificant amount of oil has been produced due to equilibrium gas injection and re-pressurization. Results alsoreveal that CO2 injection is a very efficient recovery method while injection of C1 can also improve the oilrecovery.


2021 ◽  
Author(s):  
Effiong Essien ◽  
Uchenna Onyejiaka ◽  
Stanley Onwukwe ◽  
Nnaemeka Uwaezuoke

Abstract Poor formation permeability and near well bore damage may limit water injectivity into the reservoir in a water injection project. This paper seeks to evaluate the effect of radial drilling technique on water injectivity and oil recovery in water flooding operation. Radial drilling technology utilizes hydraulic energy to create lateral perpendicular small holes through the casing into the reservoir. The holes may extend to 100 m (330 ft) into the reservoir to access fresh formations beyond the near wellbore, and damage zone. A black oil simulator (Eclipse 100) was used to modeling a lateral radial drill from the borehole into the reservoir, and that of a conventional perforation of the wellbore respectively. A simulation study was carried out using various presumed radial drill configurations in determining injectivity index, displacement efficiencies, recovery factor and water cut of the process. The determined results were further compared with that of the conventional perforation process case respectively. The results show a significant improvement in water injectivity in radial drill case with the increasing length and number of radials as compared to the conventional wellbore perforation case. The determined Recovery factor shows a progressive increase with increase in the numbers of radials drilled, irrespective of the radial length. However, it was observed that, the more the number and length of the radials drilled in to the reservoir, the higher the water cut from producer wells. Radial Drilling Technology, therefore, has a promising potential to improving water injectivity into the reservoir and thereby optimizing oil recovery in a water flooding operation.


Sign in / Sign up

Export Citation Format

Share Document