A Novel Approach to New Field Development - Application of Reservoir Mapping Technology to the Ivar Aasen Field Development for Maximizing Field Performance and Improving Reservoir Characterization

2017 ◽  
Author(s):  
Tor-Ole Jøssund ◽  
Carsten Elfenbein ◽  
Yngve Bolstad Johansen ◽  
Ingrid Sætre Drange ◽  
Lodve Hugo Olsborg ◽  
...  
Author(s):  
J. Panjaitan

The presence of shale in thin beds reservoirs affects formation evaluation where the standard conventional log analyses are not designed to properly correct this effect. The conventional logging tools, with low vertical resolution, are not able to characterize these thin beds. This implies that log values do not represent the true bed or layer properties, but rather an average of multiple beds. Muda Formation are characterized by thin bed layers, made up of clastic rock sequences with dominant lithology of sandstone inter-bedded with shale, siltstone, and organic material as confirmed by drilling cuttings, logs response, and also supported by observation from sidewall cores. There are many uncertainties related to the presence of thin beds, primarily sand, silt, shale or their combination in term of their petrophysical properties and lateral extent. Inadequate reservoir characterization can cause significant amounts of oil and gas to remain unidentified. Accurate petrophysical parameters determination play an important role in the development plan of a field. The lateral and vertical variations in the petrophysical properties of the reservoir lead to different scenarios of the field development. The study of Muda Formation in this structure has integrated the sidewall core and log data. The contribution of the thin sand laminae to the average log response resulted in underestimating the porosity (Ф) and hydrocarbon saturation (Sh). The advanced measurement, like the resistivity anisotropy, proved quite useful as the vertical and horizontal resistivity across these beds leading to measurable electrical anisotropy. The resistivity measured perpendicular to the bedding is significantly higher than resistivity measured parallel to the bedding. The situation occurs due to high resistivity sand layers interbedded with low resistivity shale layers. The true sand porosity and hydrocarbon saturation were calculated using the laminated sand shale sequence and calibrated with core data. The study led to the more realistic petrophysical estimation of the sand shale laminae. A combination and integration of high-resolution image log for sand count, nuclear magnetic resonance (NMR) for porosity evaluation and triaxial resistivity for volumetric model through Laminated Sand Analysis approach are found useful to solve thin bed reservoir issue.


Author(s):  
Behnam Jahangiri ◽  
Punyaslok Rath ◽  
Hamed Majidifard ◽  
William G. Buttlar

Various agencies have begun to research and introduce performance-related specifications (PRS) for the design of modern asphalt paving mixtures. The focus of most recent studies has been directed toward simplified cracking test development and evaluation. In some cases, development and validation of PRS has been performed, building on these new tests, often by comparison of test values to accelerated pavement test studies and/or to limited field data. This study describes the findings of a comprehensive research project conducted at Illinois Tollway, leading to a PRS for the design of mainline and shoulder asphalt mixtures. A novel approach was developed, involving the systematic establishment of specification requirements based on: 1) selection of baseline values based on minimally acceptable field performance thresholds; 2) elevation of thresholds to account for differences between short-term lab aging and expected long-term field aging; 3) further elevation of thresholds to account for variability in lab testing, plus variability in the testing of field cores; and 4) final adjustment and rounding of thresholds based on a consensus process. After a thorough evaluation of different candidate cracking tests in the course of the project, the Disk-shaped Compact Tension—DC(T)—test was chosen to be retained in the Illinois Tollway PRS and to be presented in this study for the design of crack-resistant mixtures. The DC(T) test was selected because of its high degree of correlation with field results and its excellent repeatability. Tailored Hamburg rut depth and stripping inflection point thresholds were also established for mainline and shoulder mixes.


SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1526-1551
Author(s):  
Atefeh Jahandideh ◽  
Behnam Jafarpour

Summary Reservoir simulation is a valuable tool for performance prediction, production optimization, and field-development decision making. In recent years, significant progress has been made in developing automated workflows for optimization of production and field development by combining reservoir simulation with numerical optimization schemes. Although optimization under geologic uncertainty has received considerable attention, the uncertainty associated with future development activities has not yet been considered in field-development optimization. In practice, reservoirs undergo extensive development activities throughout their life cycle. Disregarding the possibility of future developments can lead to field-performance predictions and optimization results that might be far from optimal. This paper presents a stochastic optimization formulation to account for the uncertainty in future development activities while optimizing current decision variables (e.g., well controls and locations). A motivating example is presented first to demonstrate the significance of including the uncertainty in future drilling plans in oilfield-development optimization. Because future decisions might not be implemented as planned, a stochastic optimization framework is developed to incorporate future drilling activities as uncertain (random) variables. A multistage stochastic programming framework is introduced, in which the decision maker selects an optimal strategy for the current stage decisions while accounting for the uncertainty in future development activities. For optimization, a sequential approach is adopted whereby well locations and controls are repeatedly optimized until improvements in the objective function fall below a threshold. Case studies are presented to demonstrate the advantages of treating future field-development activities as uncertain events in the optimization of current decision variables. In developing real fields, where various unpredictable external factors can cast uncertainty regarding future drilling activities, the proposed approach provides solutions that are more robust and can hedge against changes/uncertainty in future development plans better than conventional workflows.


2000 ◽  
Vol 3 (02) ◽  
pp. 150-159 ◽  
Author(s):  
Maghsood Abbaszadeh ◽  
Naoki Koide ◽  
Yoya Murahashi

Summary This article presents applications of deterministic and conditional geostatistical reservoir characterization methods to the heterogeneous carbonates of the upper Shuaiba formation in Daleel field, Oman. High-resolution reservoir descriptions based on the integration of logs, core, pressure transient tests, geology, and seismic data are constructed; and upscaled for use in reservoir simulation models to history match field performance data. Generally, geostatistical techniques combined with geology and proper upscaling of permeability heterogeneity yield best results without artificial alterations in various fluid and rock properties. Although acceptable history matches can be obtained with compromised less-detailed reservoir descriptions, these require modifications to reservoir data beyond reasonable ranges. Only detailed and concise reservoir descriptions result in history matches that are consistent with a variety of measured data sources. Introduction Reservoir characterization has gained a new momentum in the past decade, largely due to the introduction of geostatistical methods to the petroleum industry and rapid progress made in their advancement.1 The keen interest in reservoir characterization arises because it is well recognized that reservoir heterogeneity has a profound affect on all phases of hydrocarbon recovery, ranging from oil in-place calculations to sweep and conformance efficiency determination of various injection processes. Thus, any improved understanding of a reservoir will aid in better management and better exploitation of its hydrocarbon recovery potential. The challenge in understanding and predicting reservoir performance is two-fold: first, to describe reservoir geologic heterogeneities realistically and quantitatively, and second to model reservoir flow behavior in the presence of all heterogeneities accurately and efficiently.2 While large-scale reservoir features (such as main layers or major faults) can be described by deterministic techniques, less-correlated medium-scale and more-chaotic small-scale heterogeneities may be characterized by geostatistical methods or related interpolative techniques. This is especially true for estimating interwell reservoir properties based on a limited amount of information available at wells. The approaches to reservoir characterization fall into three categories: deterministic, stochastic, and combination of the two. The deterministic approach has been in use for several decades and ample success with it has been reported. The interwell properties are generally interpolated or extrapolated using algorithms based on the inverse-distance-square principle or variations of it. Usually, adjustments to the number of layers, gridblock properties, relative permeabilities, and even fluid properties are made in order to history match field performance. Some of these adjustments are warranted and some are solely knobs that are arbitrarily tuned in simulation models without physical bases. Thus, the resulting reservoir models may lack reliability and predictive capability. Geostatistical methods, however, generate multiple realizations of reservoir heterogeneity that honor available data, but differ from one another by interwell properties where direct information is not available. The data used in these models are by in large of static nature coming mainly from cores, logs, and seismic attribute extractions. Dynamic information, such as pressure transient tests and production data, are usually excluded from explicit use in geostatistical reservoir characterization, primarily due to difficulty on how to best integrate them a priori into such models. However, recent advances have been made for direct inclusion of this dynamic information through the techniques of simulated annealing3 or direct volume-averaged upscaling.4 Nevertheless, these geostatical reservoir descriptions are capable of capturing detailed geology more realistically and of producing acceptable history matches to field performance data without artificial alterations to various reservoir or fluid properties.5–10 This article applies both methods of deterministic and geostatistical reservoir characterizations to describe and history match the primary recovery performance of a complex carbonate reservoir in Daleel field, Oman. This is a comparative study in an attempt to identify an applicable description method for this field to aid in its exploitation. The deterministic model investigates effects of layering and fluid bubblepoint pressure on production performance. The geostatistical approaches model detailed reservoir heterogeneity and evaluate the importance of proper representation of heterogeneity in flow simulations. During the course of the study, new or alternate approaches for various elements of reservoir characterization techniques have been developed, which are also included. Background Field Description. The reservoir of Daleel field is an elongated carbonate shoal sands and back carbonates in the upper Shuaiba formation. Five geographical sedimentary environments of protected back shoal, shoal, shoal margin slope, inner shelf, and outer shelf comprise the formation. The productive portion of the reservoir is situated in the protected back shoal region (central part of the carbonate mound) and its marginal parts are located in regions with alternating cycles of shoal and shelf sequences. The reservoir is a stratigraphic-structural oil trap accumulation. Bioclastic peloidal packstone and wackstone form the main reservoir sedimentary material in this field. Repeated upward shallowing parasequence cycles, which relate to the geographical sedimentary environment, are recognized on wireline responses. These parasequence boundaries may be considered as synchronous surfaces for interwell correlation. Detailed core and thin section studies have identified 12 lithofacies in the upper Shuaiba, ranging from coarse grain porous limestone to argillaceous lime and lime mudstone. Microstylolites, burrowing and other forms of diagenesis are common. Therefore, pore/throat size distribution and their connectivity as influenced by secondary diagenesis processes mainly control porosity and permeability developments. Significant changes in these lithofacies occur laterally and vertically, and there is an important tightly consolidated discontinuous lime mudstone deposit in the middle of the productive upper zone in the central part of the field.


2019 ◽  
Vol 38 (6) ◽  
pp. 465-472
Author(s):  
Hernán Buijs ◽  
Jorge Ponce ◽  
Paul Veeken

Diagnostic fracture injection tests contain critical information for reservoir characterization and hydraulic fracturing design, defining every input and output of the simulation modeling process. They help to assess the expected fracture geometry, proppant pack conductivity, formation flow capacity, and optimum hydraulic fracture design. At the same time, these data provide the necessary means to place a frac job adequately. However, interpretation challenges and inherent modeling nonuniqueness demonstrate the need for more constraints to reduce the solution space. Proprietary workflows have been applied using a 3D planar shear decoupled hydraulic fracture simulator to several vertical wells in the Vaca Muerta play in Argentina. The generated information makes it possible to build models consistent with multiple independent measurements from bottom-hole gauges, near wellbore, and far-field assessments of fracture geometry, which permit us to better understand production performance of the wells. The proposed workflow can be utilized to collapse the learning curve in a significant and meaningful way, playing a vital role in the optimization of horizontal wells and the field development strategy.


2021 ◽  
Author(s):  
Sunanda Magna Bela ◽  
Abdil Adzeem B Ahmad Mahdzan ◽  
Noor Hidayah A Rashid ◽  
Zairi A Kadir ◽  
Azfar Israa Abu Bakar ◽  
...  

Abstract Gravel packing in a multilayer reservoir during an infill development project requires treating each zone individually, one after the other, based on reservoir characterization. This paper discusses the installation of an enhanced 7-in. multizone system to achieve both technical and operational efficiency, and the lessons learned that enabled placement of an optimized high-rate water pack (HRWP) in the two lower zones and an extension pack in the uppermost zone. This new approach helps make multizone cased-hole gravel-pack (CHGP) completions a more technically viable and cost-effective solution. Conventional CHGPs are limited to either stack-pack completions, which can incur high cost because of the considerable rig time required for multizone operations, or alternate-path single-trip multizone completions that treat all the target zones simultaneously, with one pumping operation. However, this method does not allow for individual treatment to suit reservoir characterization. The enhanced 7-in. multizone system can significantly reduce well completion costs and pinpoint the gravel placement technique for each zone, without pump-rate limitations caused by excessive friction in the long interval system, and without any fiuid-loss issues after installation because of the modular sliding side-door (SSD) screen design feature. A sump packer run on wireline acts as a bottom isolation packer and as a depth reference for subsequent tubing-conveyed perforating (TCP) and wellbore cleanup (WBCU) operations. All three zones were covered by 12-gauge wire-wrapped modular screens furnished with blank pipe, packer extension, and straddled by two multizone isolation packers between the zones, with a retrievable sealbore gravel-pack packer at the top. The entire assembly was run in a single trip, therefore rig time optimization was achieved. The two lower zones were treated with HRWPs, while the top zone was treated with an extension pack. During circulation testing on the lowermost zone, high pumping pressure was recorded, and after thorough observation of both pumping parameters and tool configuration, it was determined that the reduced inner diameter (ID) in the shifter might have been a causal factor, thereby restricting the flow area. This was later addressed with the implementation of a perforated pup joint placed above the MKP shifting tool. The well was completed within the planned budget and time and successfully put on sand-free production, exceeding the field development planning (FDP) target. The enhanced 7-in. multizone system enabled the project team to beat the previous worldwide track record, which was an HRWP treatment only. As a result of proper fluid selection and rigorous laboratory testing, linear gel was used to transport 3 ppa of slurry at 10 bbl/min, resulting in a world-first extension pack with a 317-lbm/ft packing factor.


2021 ◽  
Author(s):  
Nasrine Medjdouba ◽  
Zahia Benaissa ◽  
Sabiha Annou

<p>The main hydrocarbon-bearing reservoirover the study area is the lower Triassic Argilo-Gréseux reservoir. The Triassic sand is deposited as fluvial channels and overbank sands with a thickness ranging from 10 to 20 m, lying unconformably on the Paleozoic formations. Lateral and vertical distribution of the sand bodies is challenging which makes their mapping very difficult andnearly impossible with conventional seismic analysis. </p><p>In order to better define the optimum drilling targets, the seismic attribute analysis and reservoir characterization process were performed targeting suchthin reservoir level, analysis of available two seismic vintages of PSTM cubes as well as post and pre stack inversion results were carried out.The combination of various attributes analysis (RMS amplitude, Spectral decomposition, variance, etc.) along with seismic inversion results has helped to clearly identify the channelized feature and its delineation on various horizon slices and geobodies, the results were reviewed and calibrated with reservoir properties at well location and showed remarkable correlation.</p><p>Ten development wells have been successfully drilledbased on the seismic analysis study, confirming the efficiency of seismic attribute analysis to predicted channel body geometry.</p><p>Keywords: Channel, Attributes, Amplitude, Inversion, Fluvial reservoir.</p>


Sign in / Sign up

Export Citation Format

Share Document