Imaging and Characterization of Microporous Carbonates Using Confocal and Electron Microscopy of Epoxy Pore Casts

SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1220-1233 ◽  
Author(s):  
A.. Hassan ◽  
V.. Chandra ◽  
M. P. Yutkin ◽  
T. W. Patzek ◽  
D. N. Espinoza

Summary Microporous carbonates contain perhaps 50% of the oil left behind in current projects in the giant carbonate fields in the Middle East and elsewhere. Pore geometry, connectivity, and wettability of the micropore systems in these carbonates are of paramount importance in finding new improved-oil-recovery methods. In this study, we present a robust pore-imaging approach that uses confocal laser scanning microscopy (CLSM) to obtain high-resolution 3D images of etched epoxy pore casts of the highly heterogeneous carbonates. In our approach, we have increased the depth of investigation for carbonates 20-fold, from 10 µm reported by Fredrich (1999) and Shah et al. (2013) to 200 µm. In addition, high-resolution 2D images from scanning electron microscopy (SEM) have been correlated with the 3D models from CLSM to develop a multiscale imaging approach that covers a range of scales, from millimeters in three dimensions to micrometers in two dimensions. The developed approach was implemented to identify various pore types [e.g., intercrystalline microporosity (IM), intragranular microporosity (IGM), and interboundary sheet pores (SPs)] in limestone and dolomite samples.

2000 ◽  
Vol 20 (1) ◽  
pp. 7-15 ◽  
Author(s):  
R. Heintzmann ◽  
G. Kreth ◽  
C. Cremer

Fluorescent confocal laser scanning microscopy allows an improved imaging of microscopic objects in three dimensions. However, the resolution along the axial direction is three times worse than the resolution in lateral directions. A method to overcome this axial limitation is tilting the object under the microscope, in a way that the direction of the optical axis points into different directions relative to the sample. A new technique for a simultaneous reconstruction from a number of such axial tomographic confocal data sets was developed and used for high resolution reconstruction of 3D‐data both from experimental and virtual microscopic data sets. The reconstructed images have a highly improved 3D resolution, which is comparable to the lateral resolution of a single deconvolved data set. Axial tomographic imaging in combination with simultaneous data reconstruction also opens the possibility for a more precise quantification of 3D data. The color images of this publication can be accessed from http://www.esacp.org/acp/2000/20‐1/heintzmann.htm. At this web address an interactive 3D viewer is additionally provided for browsing the 3D data. This java applet displays three orthogonal slices of the data set which are dynamically updated by user mouse clicks or keystrokes.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 464
Author(s):  
Simona Liliana Iconaru ◽  
Mihai Valentin Predoi ◽  
Patrick Chapon ◽  
Sofia Gaiaschi ◽  
Krzysztof Rokosz ◽  
...  

In this study, the cerium-doped hydroxyapatite (Ca10−xCex(PO4)6(OH)2 with xCe = 0.1, 10Ce-HAp) coatings obtained by the spin coating method were presented for the first time. The stability of the 10Ce-HAp suspension particles used in the preparation of coatings was evaluated by ultrasonic studies, transmission electron microscopy (TEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The surface morphology of the 10Ce-HAp coating was studied by SEM and atomic force microscopy (AFM) techniques. The obtained 10Ce-HAp coatings were uniform and without cracks or unevenness. Glow discharge optical emission spectroscopy (GDOES) and X-ray photoelectron spectroscopy (XPS) were used for the investigation of fine chemical depth profiling. The antifungal properties of the HAp and 10Ce-HAp suspensions and coatings were assessed using Candida albicans ATCC 10231 (C. albicans) fungal strain. The quantitative antifungal assays demonstrated that both 10Ce-HAp suspensions and coatings exhibited strong antifungal properties and that they successfully inhibited the development and adherence of C. albicans fungal cells for all the tested time intervals. The scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) visualization of the C. albicans fungal cells adherence to the 10Ce-HAp surface also demonstrated their strong inhibitory effects. In addition, the qualitative assays also suggested that the 10Ce-HAp coatings successfully stopped the biofilm formation.


2016 ◽  
Vol 186 ◽  
pp. 45-59 ◽  
Author(s):  
Radhika Poojari ◽  
Rohit Srivastava ◽  
Dulal Panda

Polymeric nanoassemblies represent an attractive strategy for efficient cellular internalization of microtubule targeted anticancer drugs. Using dynamic light scattering, zeta potential, transmission electron microscopy and scanning electron microscopy, the physical properties and surface morphology of microtubule-binding PEGylated PLGA assembled nanospheres (100–200 nm) were analyzed. The present approach leads to strong internalization as observed by confocal laser scanning microscopy and transmission electron microscopy in hepatocarcinoma cells. The effect of these nanoassemblies on microtubules and mitosis were explored using immunofluorescence microscopy. The effects of these nanoassemblies on cancer cell proliferation and cell death revealed their antitumor enhancing effects. Perturbation of the microtubule assembly, mitosis and nuclear modulations potentiated the antineoplastic effects delivered via nanospheres in hepatocarcinoma cells. The extensive biomolecular and physical characterizations of the synthesized nanoassemblies will help to design potent therapeutic materials and the present approach can be applied to deliver microtubule-targeted drugs for liver cancer therapy.


2000 ◽  
Vol 348 (1) ◽  
pp. 183-188 ◽  
Author(s):  
Frank DOMBROWSKI ◽  
Ralf KUBITZ ◽  
Anila CHITTATTU ◽  
Matthias WETTSTEIN ◽  
Nirmalendu SAHA ◽  
...  

Immunohistochemical studies suggest that canalicular secretion via multidrug resistance protein 2 (Mrp2), a conjugate export pump encoded by the Mrp2 gene, is regulated by rapid transporter retrieval from/insertion into the canalicular membrane. The present study was undertaken in order to investigate this suggestion by means of immunogold electron microscopy. Therefore the effects of lipopolysaccharide (LPS) and osmolarity on Mrp2 localization were studied following immunogold labelling in the perfused rat liver by quantitative electron microscopy and morphometric analyses, and by confocal laser scanning microscopy. Mrp2 activity was assessed in the isolated perfused rat liver by measuring the excretion of dinitrophenyl-S-glutathione as a substrate of Mrp2. Both LPS and hyperosmolarity resulted in a statistically significant decrease in immunogold-labelled Mrp2 in the canalicular membrane and canalicular villi, and an increase in labelling in the pericanalicular cytoplasm. Canalicular morphometric parameters were unchanged under these conditions compared with controls. Under hyperosmolar perfusion Mrp2, but not the canalicular protein dipeptidylpeptidase IV, was found inside the cells, as shown by double immunofluorescence and confocal laser scanning microscopy. The findings suggest a selective retrieval of Mrp2 from the canalicular membrane under the influence of hyperosmolarity and LPS, whereas canalicular morphology remains unchanged.


Sign in / Sign up

Export Citation Format

Share Document