A Semianalytical Model for Horizontal-Well Productivity With Pressure Drop Along the Wellbore

SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1603-1614 ◽  
Author(s):  
Wanjing Luo ◽  
Changfu Tang ◽  
Yin Feng

Summary This study aims to develop a semianalytical model to calculate the productivity index (PI) of a horizontal well with pressure drop along the wellbore. It has been indicated that by introducing novel definitions of horizontal-well permeability and conductivity, the equation of fluid flow along a horizontal well with pressure drop has the same form as the one for fluid flow in a varying-conductivity fracture. Thus, the varying-conductivity-fracture model and PI model can be used to obtain the PI of a horizontal well. Results indicate that the PI of a horizontal well depends on the interaction between horizontal-well conductivity, penetration ratio, and Reynolds number. New type curves of the penetration ratios with various combinations of parameters have been presented. A complete-penetration zone and a partial-penetration zone can be identified on the type curves. Based on the type curves, two examples have also been presented to illustrate the advantages of this work in optimizing parameters of horizontal wells.

2014 ◽  
Vol 955-959 ◽  
pp. 3484-3488
Author(s):  
Guang Zhong Lv ◽  
Jiang Qiao Zhang

An electrolytic simulation experiment was designed according to the water and electricity resembling principle. The pressure contour distribution and the effects of the productivity of the fractured horizontal well were experimentally studied under the flooding. The equal pressure lines around horizontal wells were elliptic, and the equal pressure lines were Parallelled distribution in the fracture of horizontal well, Flow states was unidirectional flow, indicating staged fracturing of horizontal well by improving Percolation way greatly reduce seepage resistance. Under the experimental conditions, staged fracturing horizontal waterflooding development best combination of parameters: row and staggered well pattern, penetration ratio of horizontal section was 0.8, the number of fractures should be 6 (fracture space was 91m), penetration ratio of fracture was 0.25, the angle between the fracture and horizontal well is 90 degree. The importance ranking of productivity was horizontal length, the number of fractures (fracture space ),fracture length, he angle between the fracture and horizontal well and well-pattern type.


Author(s):  
J. He ◽  
B. Q. Zhang

A new hyperbolic function discretization equation for two dimensional Navier-Stokes equation in the stream function vorticity from is derived. The basic idea of this method is to integrat the total flux of the general variable ϕ in the differential equations, then incorporate the local analytic solutions in hyperbolic function for the one-dimensional linearized transport equation. The hyperbolic discretization (HD) scheme can more accurately represent the conservation and transport properties of the governing equation. The method is tested in a range of Reynolds number (Re=100~2000) using the viscous incompressible flow in a square cavity. It is proved that the HD scheme is stable for moderately high Reynolds number and accurate even for coarse grids. After some proper extension, the method is applied to predict the flow field in a new type combustor with air blast double-vortex and obtained some useful results.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Hoseinzadeh ◽  
Ali Sohani ◽  
Saman Samiezadeh ◽  
H. Kariman ◽  
M.H. Ghasemi

Purpose This study aim to use the finite volume method to solve differential equations related to three-dimensional simulation of a solar collector. Modeling is done using ANSYS-fluent software program. The investigation is done for a photovoltaic (PV) solar cell, with the dimension of 394 × 84 mm2, which is the aluminum type and receives the constant heat flux of 800 W.m−2. Water is also used as the working fluid, and the Reynolds number is 500. Design/methodology/approach In the present study, the effect of fluid flow path on the thermal, electrical and fluid flow characteristics of a PV thermal (PVT) collector is investigated. Three alternatives for flow paths, namely, direct, curved and spiral for coolant flow, are considered, and a numerical model to simulate the system performance is developed. Findings The results show that the highest efficiency is achieved by the solar cell with a curved fluid flow path. Additionally, it is found that the curved path’s efficiency is 0.8% and 0.5% higher than that of direct and spiral paths, respectively. Moreover, the highest pressure drop occurs in the curved microchannel route, with around 260 kPa, which is 2% and 5% more than the pressure drop of spiral and direct. Originality/value To the best of the authors’ knowledge, there has been no study that investigates numerically heat transfer, fluid flow and electrical performance of a PV solar thermal cell, simultaneously. Moreover, the effect of the microchannel routes which are considered for water flow has not been considered by researchers so far. Taking all the mentioned points into account, in this study, numerical analysis on the effect of different microchannel paths on the performance of a PVT solar collector is carried. The investigation is conducted for the Reynolds number of 500.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110407
Author(s):  
Hosny Abou-Ziyan ◽  
Reda Ameen ◽  
Khairy Elsayed

This paper presents the results of fluid flow and convection heat transfer in concentric and eccentric annuli between two cylinders using a three-dimensional computational fluid dynamics model. Effects of rotational speed ( n = 0, 150, 300, and 400 rpm) and eccentricity (ε = 0, 0.15, 0.3, 0.45, and 0.6) on axial and tangential velocity distribution, pressure drop and forced convection heat transfer are investigated for radii ratios (η) of 0.2, 0.4, 0.6, and 0.8, Reynolds number 2.0 × 103–1.236 × 105, Taylor number 1.47 × 106–1.6 × 1010, and Prandtl number 3.71–6.94. The parameters cover many applications, including rotary heat exchangers, mixers, agitators, etc. Nusselt numbers and friction factors for stationary and rotated concentric and eccentric annuli are correlated with four dimensionless numbers. The results revealed that when the speed of the inner cylinder increases from 0 to 400 rpm, the friction factor increases by 7.7%–103% for concentric and 8.2%–148% for eccentric annuli, whereas Nusselt number enhances by 37%–333% for concentric and 44%–340% for eccentric annuli. The radius ratio has a substantial effect on the heat transfer and pressure drop in annuli. The eccentricity enhances the heat transfer up to 12%, whereas its effect on the friction factor is not monotonic as it depends on Reynolds number, radii ratios, and rotational speed.


Author(s):  
Shian Li ◽  
Gongnan Xie ◽  
Bengt Sunden

Purpose – The employment of continuous ribs in a passage involves a noticeable pressure drop penalty, while other studies have shown that truncated ribs may provide a potential to reduce the pressure drop while keeping a significant heat transfer enhancement. The purpose of this paper is to perform computer-aided simulations of turbulent flow and heat transfer of a rectangular cooling passage with continuous or truncated 45-deg V-shaped ribs on opposite walls. Design/methodology/approach – Computational fluid dynamics technique is used to study the fluid flow and heat transfer characteristics in a three-dimensional rectangular passage with continuous and truncated V-shaped ribs. Findings – The inlet Reynolds number, based on the hydraulic diameter, is ranged from 12,000 to 60,000 and a low-Re k-e model is selected for the turbulent computations. The local flow structure and heat transfer in the internal cooling passages are presented and the thermal performances of the ribbed passages are compared. It is found that the passage with truncated V-shaped ribs on opposite walls provides nearly equivalent heat transfer enhancement with a lower (about 17 percent at high Reynolds number of 60,000) pressure loss compared to a passage with continuous V-shaped ribs or continuous transversal ribs. Research limitations/implications – The fluid is incompressible with constant thermophysical properties and the flow is steady. The passage is stationary. Practical implications – New and additional data will be helpful in the design of ribbed passages to achieve a good thermal performance. Originality/value – The results imply that truncated V-shaped ribs are very effective in improving the thermal performance and thus are suggested to be applied in gas turbine blade internal cooling, especially at high velocity or Reynolds number.


SPE Journal ◽  
2012 ◽  
Vol 17 (03) ◽  
pp. 742-751 ◽  
Author(s):  
F.. Farshbaf Zinati ◽  
J.D.. D. Jansen ◽  
S.M.. M. Luthi

Summary Recent developments in the deployment of distributed-pressure-measurement devices in horizontal wells promise to lead to a new, low-cost, and reliable method of monitoring production and reservoir performance. Practical applicability of distributed-pressure sensing for quantitative-inflow detection will strongly depend on the specifications of the sensors, details of which were not publicly available at the time of publication. Therefore, we theoretically examined the possibility of identifying reservoir inflow from distributed-pressure measurements in the well. The wellbore and nearwellbore region were described by semianalytical steady-state models, and a gradient-based inversion method was applied to estimate the specific productivity index (SPI) as a function of along-well position. We employed the adjoint method to obtain the gradients, which resulted in a computationally efficient inversion scheme. With the aid of two numerical experiments (one of which was based on a real well and reservoir), we investigated the effects of well and reservoir parameters, sensor spacing, sensor resolution, and measurement noise on the quality of the inversion results. In both experiments, we generated synthetic measurements with the aid of a high-resolution reservoir-simulation model and used these to test the semianalytical inversion algorithm. In the first experiment, we considered a 2000-m horizontal well passing through two 300-m high-permeability streaks in a background with a permeability that was 10 times lower. The location of the streaks and the SPIs along the well were detected with fair accuracy using 20 unknown parameters (SPI values) and 20 pressure measurements. Decreasing the number of measurements resulted in a poorer detection of the streaks and their SPIs. The detection performance also decreased for increasing noise levels and deteriorated sensor resolution, though the negative effect of random measurement noise was cancelled out primarily by stacking multiple measurements. The detrimental effects of measurement noise and low sensor resolution were strongest in areas where the inflow was lowest (usually close to the toe). The second experiment concerned a high-rate near-horizontal well with slightly varying inclination that intersected a dipping package of formations with strongly variable permeabilities. Additionally, a satisfactory detection of SPIs was obtained even though the heterogeneities were no longer perpendicular to the well as in the first experiment. As a result of using the simple semianalytical forward model and the adjoint method, the inversions typically required less than 90 seconds on a standard laptop. This offered the opportunity to extend the algorithm to multiphase flow and dynamic applications (pressure-transient testing), while still maintaining sufficient computational speed to perform the inversion in real time.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1364-1377 ◽  
Author(s):  
Vyacheslav Guk ◽  
Mikhail Tuzovskiy ◽  
Don Wolcott ◽  
Joe Mach

Summary Horizontal wells with multiple hydraulic fractures have become a standard completion for the development of tight oil and gas reservoirs. Successful optimization of multiple-fracture design on horizontal wells began empirically in the Barnett Shale in the late 1990s (Steward 2013; Gertner 2013). More recently, research has focused on further improving fracturing performance by developing a model-derived optimum. Some researchers have focused on an economic optimum on the basis of multiple runs of an analytical or numerical model (Zhang et al. 2012; Saputelli et al. 2014). With such an approach, a new set of model runs is necessary to optimize the design each time the input parameters change significantly. Running multiple simulations for every optimization case might not always be practical. An alternative approach is to develop well-performance curves with dimensionless variables on the basis of the performance model. Such an approach was the basis for unified fracture design (UFD) for a single fracture in a vertical well (Economides et al. 2002). However, a similar systemized method to calculate the optimum for a horizontal well with multiple hydraulic fractures was missing. The objective of this study was to develop a rigorous and unified dimensionless optimization technique with type curves for the case of multiple transverse fractures in a horizontal well—an extension of UFD. The mathematical problem was solved in dimensionless variables. Multiple fractures include the proppant number (NP), penetration ratio (Ix), dimensionless conductivity (CfD), and aspect ratio (yeD) for each fracture, which is inversely proportional to the number of fractures. The direct boundary element (DBE) method was used to generate the dimensionless productivity index (JD) for a given range of these parameters (28,000 runs) for the pseudosteady-state case. Finally, total well JD was plotted as a function of the number of fractures for various NP. The effect of minimum fracture width was studied, and the optimization curves were adjusted for three cases of minimum fracture width. The provided dimensionless type curves can be used to identify the optimized number of fractures and their geometry for a given set of parameters, without running a more complicated numerical model multiple times. First, the proppant mass (and hence, NP) used for the fracture design can be selected on the basis of economic or other considerations. For this purpose, a relationship between total JD and NP, which accounts for the minimum fracture width requirement, was provided. Then, the optimal number of fractures can be calculated for a given NP using the generated type curves with minimum width constraints. The following observations were made during the study on the basis of the performed runs: For a given volume or proppant, NP, total JD for multiple fractures increases to an asymptote as the number of fractures increases. This asymptote represents a technical potential for multiple fractures and for high proppant numbers (NP≥100), with a technical potential of 3πNP. Below this asymptote, the more fractures that are created for a fixed NP, the larger the JD. In practice, minimum fracture width constrains the fracture geometry, and therefore maximum JD. For the case when 20/40 sand is used for multiple hydraulic fracturing of a 0.01-md formation with square total area, the optimal number of factures is approximately NP25. Application of horizontal drilling technology with multiple fractures assumes the availability of high proppant numbers. It was shown mathematically that the alternative low proppant numbers (NP≤20 for the previous case) are impractical for multiple fractures, because total JD cannot be significantly higher than JD for an optimized single fracture in the same area. This means that low formation permeability and/or high proppant volumes are needed for multiple fracture treatments.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Zhiwang Yuan ◽  
Li Yang ◽  
Yingchun Zhang ◽  
Rui Duan ◽  
Xu Zhang ◽  
...  

For deep-water faulted sandstone reservoirs, the general practice is to design long horizontal wells improving well productivity. During the project implementation stage, well tests are performed on all drilled wells to evaluate well productivity accurately. Furthermore, multisize chokes are often utilized in a shorten test time for loosen formation, high test cost, and high well productivity. Nevertheless, the conventional productivity evaluation approach cannot accurately evaluate the well test productivity and has difficulty in determining the underneath pattern. As a result, the objective of this paper is to determine a productivity evaluation method for multisize chokes long horizontal well test in deep-water faulted sandstone reservoir. This approach introduces a productivity model for long horizontal wells in faulted sandstone reservoir. It also includes the determination of steady-state test time and the productivity evaluation method for multisize chokes. In this paper, the EGINA Oilfield, a deep-water faulted sandstone reservoir, located in West Africa was chosen as the research target. Based on Renard and Dupuy’s steady-state equation, the relationship between the productivity index per meter and the length of horizontal section was derived. Consequently, this relationship is used to determine the productivity pattern for long horizontal wells with the same geological features, which can provide more accurate productivity evaluations for tested wells and forecast the well productivity for untested wells. After implementing this approach on the EGINA Oilfield, the determined relationship is capable to accurately evaluate the test productivity for long horizontal wells in reservoirs with similar characteristics and assist in examination and treatment for horizontal wells with abnormal productivity.


2013 ◽  
Vol 29 (3) ◽  
pp. 527-534 ◽  
Author(s):  
K. Mohammadzadeh ◽  
E. M. Kolahdouz ◽  
E. Shirani ◽  
M. B. Shafii

AbstractIn the present study, the effect of the number of stages of Tesla Micro-Valve (TMV), as well as the dependency of Reynolds number, Re, on the valve performance has been analyzed. For this purpose, different layouts include one to four-stage with different sizes are investigated numerically. The main criterion for evaluation of valves performance is diodicity, Di. Unsteady and steady flow in valve have been simulated and compared. It is shown that although there are some difference but the trend is similar for both responses. Finally, 2-D and steady state computations of the fluid flow have been utilized that reveal a strong dependence of Di on Re and pressure drop, ΔP. The results showed that the maximum Di of the two-stage microvalve is approximately 1.45 times of that of one-stage. Additional stages increase the complexity, and they do not change Di appreciably. It is concluded that two-stage layout of Tesla type valve is the best option. Also, the two-stage valve performance for three different sizes is compared with Nozzle-Diffuser type Micro-Valve (NDMV). Comparisons, which are performed based on calculation Di in applicable range of Re, showed that Di as a function of Re is independent of the valve size. Also, the superiority of the Tesla type valve at higher Re and its weakness at lower Re is observed.


Sign in / Sign up

Export Citation Format

Share Document